top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lectures on Hermite and Laguerre expansions / by Sundaram Thangavelu
Lectures on Hermite and Laguerre expansions / by Sundaram Thangavelu
Autore Thangavelu, Sundaram
Pubbl/distr/stampa Princeton, N.J. : Princeton University Press, 1993
Descrizione fisica xv, 195 p. : ill. ; 24 cm.
Disciplina 515.5
Collana Mathematical notes ; 42
Soggetto topico Hermite polynomials
Laguerre polynomials
Representations of groups
ISBN 0691000484
Classificazione AMS 42C10
QA404.5.T37
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001065959707536
Thangavelu, Sundaram  
Princeton, N.J. : Princeton University Press, 1993
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Spectral Expansions of Non-Self-Adjoint Generalized Laguerre Semigroups
Spectral Expansions of Non-Self-Adjoint Generalized Laguerre Semigroups
Autore Patie Pierre
Edizione [1st ed.]
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 2021
Descrizione fisica 1 online resource (196 pages)
Disciplina 515/.7222
Altri autori (Persone) SavovMladen
Collana Memoirs of the American Mathematical Society
Soggetto topico Spectral theory (Mathematics)
Nonselfadjoint operators
Laguerre polynomials
Partial differential equations -- Spectral theory and eigenvalue problems -- General topics in linear spectral theory
Operator theory -- Groups and semigroups of linear operators, their generalizations and applications -- Markov semigroups and applications to diffusion processes
Approximations and expansions -- Approximations and expansions -- Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
Probability theory and stochastic processes -- Distribution theory -- Infinitely divisible distributions; stable distributions
Harmonic analysis on Euclidean spaces -- Nontrigonometric harmonic analysis -- General harmonic expansions, frames
Sequences, series, summability -- Inversion theorems -- Tauberian theorems, general
Functions of a complex variable -- Entire and meromorphic functions, and related topics -- Functional equations in the complex domain, iteration and composition of analytic functions
Integral transforms, operational calculus -- Integral transforms, operational calculus -- Transforms of special functions
ISBN 9781470467524
1470467526
Classificazione 35P0547D0741A6060E0742C1540E0530D0544A20
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title page -- Acknowledgments -- Chapter 1. Introduction and main results -- 1.1. Characterization and properties of gL semigroups -- 1.2. Definition and properties of subsets of \Ne -- 1.3. Eigenvalue expansion and regularity of the gL semigroups -- 1.4. Convergence to equilibrium -- 1.5. Hilbert sequences and spectrum -- 1.6. Plan of the paper -- 1.7. Notation, conventions and general facts -- Chapter 2. Strategy of proofs and auxiliary results -- 2.1. Outline of our methodology -- 2.2. Proof of Theorem ??? (???) -- 2.3. Additional basic facts on gL semigroups -- Chapter 3. Examples -- Chapter 4. New developments in the theory of Bernstein functions -- 4.1. Review and basic properties of Bernstein functions -- 4.2. Products of Bernstein functions: new examples -- 4.3. Useful estimates of Bernstein functions on \C₊ -- Chapter 5. Fine properties of the density of the invariant measure -- 5.1. A connection with remarkable self-decomposable variables -- 5.2. Fine distributional properties of _{ } -- 5.3. Proof of Theorem ??? (???) -- 5.4. Small asymptotic behaviour of \nuh and of its successive derivatives -- 5.5. Proof of Theorem ??? -- 5.6. Proof of Theorem ??? -- 5.7. End of proof of Theorem ??? -- Chapter 6. Bernstein-Weierstrass products and Mellin transforms -- 6.1. Exponential functional of subordinators -- 6.2. The functional equations (???) and (???) on \R₊ -- 6.3. Proof of Theorem ??? -- 6.4. Proof of Proposition 6.1.2 -- 6.5. Proof of Theorem ??? (???): Bounds for ᵩ -- 6.6. Large asymptotic behaviours of ᵩ along imaginary lines -- 6.7. Proof of Theorem ??? (???) -- 6.8. Proof of Theorem 6.0.2 (2b): Examples of large asymptotic estimates of | ᵩ| -- Chapter 7. Intertwining relations and a set of eigenfunctions -- 7.1. Proof of Theorem ??? -- 7.2. End of the proof of the intertwining relation (7.3).
7.3. Proofs of Theorem ??? (???) and (???) -- 7.4. Proof of the uniqueness of the invariant measure -- 7.5. Proof of Theorem ??? -- Chapter 8. Co-eigenfunctions: existence and characterization -- 8.1. Mellin convolution equations: distributional and classical solutions -- 8.2. Existence of co-eigenfunctions: Proof of Theorem ??? -- 8.3. The case ∈\Ne_{∞,∞}. -- 8.4. The case ∈\Ne_{∞}∖\Nii -- 8.5. The case ∈\Ne^{ }_{∞}. -- Chapter 9. Uniform and norms estimates of the co-eigenfunctions -- 9.1. Proof of Theorem 2.1.5 (1) via a classical saddle point method -- 9.2. Proof of Theorem 2.1.5 (2) via the asymptotic behaviour of zeros of the derivatives of -- 9.3. Proof of Theorem ??? (???) through Phragmén-Lindelöf principle -- Chapter 10. The concept of reference semigroups: \Lnu-norm estimates and completeness of the set of co-eigenfunctions -- 10.1. Estimates for the \lnu norm of \nun -- 10.2. Completeness of (\nun)_{ ≥0} in \lnu -- Chapter 11. Hilbert sequences, intertwining and spectrum -- 11.1. Proof of Theorem ??? -- Chapter 12. Proof of Theorems ???, ??? and ??? -- 12.1. Proof of Theorem 1.3.1 (2) -- 12.2. Proof of Theorem ??? (???) -- 12.3. Heat kernel expansion -- 12.4. Expansion of the adjoint semigroup: Proof of Theorem ??? -- 12.5. Proof of of Theorem ???: Rate of convergence to equilibrium -- Bibliography -- Back Cover.
Record Nr. UNINA-9910972392703321
Patie Pierre  
Providence : , : American Mathematical Society, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui