top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
LIMS, implementation and management [[electronic resource] /] / Allen S. Nakagawa
LIMS, implementation and management [[electronic resource] /] / Allen S. Nakagawa
Autore Nakagawa Allen S
Pubbl/distr/stampa Cambridge, : Royal Society of Chemistry, c1994
Descrizione fisica 1 online resource (198 p.)
Disciplina 502.85
Soggetto topico Laboratories - Data processing
Laboratories - Automation
Science - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-84755-124-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BK9780851868240-FX001; BK9780851868240-FP001; BK9780851868240-FP005; BK9780851868240-FP009; BK9780851868240-00001; BK9780851868240-00009; BK9780851868240-00030; BK9780851868240-00048; BK9780851868240-00063; BK9780851868240-00075; BK9780851868240-00081; BK9780851868240-00088; BK9780851868240-00095; BK9780851868240-00112; BK9780851868240-00119; BK9780851868240-00138; BK9780851868240-00148; BK9780851868240-00159; BK9780851868240-00166; BK9780851868240-00177; BK9780851868240-BP015
Record Nr. UNINA-9910455242103321
Nakagawa Allen S  
Cambridge, : Royal Society of Chemistry, c1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
LIMS, implementation and management [[electronic resource] /] / Allen S. Nakagawa
LIMS, implementation and management [[electronic resource] /] / Allen S. Nakagawa
Autore Nakagawa Allen S
Pubbl/distr/stampa Cambridge, : Royal Society of Chemistry, c1994
Descrizione fisica 1 online resource (198 p.)
Disciplina 502.85
Soggetto topico Laboratories - Data processing
Laboratories - Automation
Science - Data processing
ISBN 1-84755-124-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BK9780851868240-FX001; BK9780851868240-FP001; BK9780851868240-FP005; BK9780851868240-FP009; BK9780851868240-00001; BK9780851868240-00009; BK9780851868240-00030; BK9780851868240-00048; BK9780851868240-00063; BK9780851868240-00075; BK9780851868240-00081; BK9780851868240-00088; BK9780851868240-00095; BK9780851868240-00112; BK9780851868240-00119; BK9780851868240-00138; BK9780851868240-00148; BK9780851868240-00159; BK9780851868240-00166; BK9780851868240-00177; BK9780851868240-BP015
Record Nr. UNINA-9910778312003321
Nakagawa Allen S  
Cambridge, : Royal Society of Chemistry, c1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Streamlining Your Research Laboratory with Python
Streamlining Your Research Laboratory with Python
Autore Russo Mark F
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (382 pages)
Disciplina 502.85/5133
Altri autori (Persone) NeilWilliam
Soggetto topico Laboratories - Data processing
Python (Computer program language)
ISBN 1-394-24990-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title Page -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1: Introduction -- 1.1 Python Implementations -- 1.2 Installing the Python Toolkit -- 1.3 Python 3 vs. Python 2 -- 1.4 Python Package Index -- 1.5 Programming Editors -- 1.6 Notebook Editors -- 1.7 Using the Jupyter Notebook Interface -- 1.8 JupyterLite -- 1.9 Things Change -- 1.10 Key Takeaways -- Chapter 2: Language Basics -- 2.1 Python Interactive Console -- 2.2 Data Types -- 2.3 Variables and Literals -- 2.4 Strings -- 2.4.1 Simple Strings -- 2.4.2 Multi-Line Strings -- 2.4.3 Escape Characters in a String -- 2.4.4 Raw Strings -- 2.4.5 Formatted Strings -- 2.4.6 Strings as Objects -- 2.4.7 Characters and Encodings -- 2.5 Expressions Using Operators -- 2.5.1 Arithmetic Operators -- 2.5.2 Assignment Operators -- 2.5.3 Comparison Operators -- 2.5.4 Boolean Operators -- 2.5.5 Chaining Comparisons -- 2.5.6 Comparing Floating-Point Numbers -- 2.6 Functions and How to Use Them -- 2.6.1 Invoking Functions -- 2.6.2 Built-in Functions -- 2.6.3 The math Module for Additional Mathematical Functions -- 2.6.4 The random Module for Pseudo-Random Number Generation -- 2.6.5 The time and datetime Modules for Handling Dates and Times -- 2.6.6 The sys Module for System Interactions -- 2.6.7 Scope and Namespace -- 2.7 Your First Python Program -- 2.8 Key Takeaways -- Chapter 3: Data Structures -- 3.1 Lists -- 3.1.1 Introducing Lists -- 3.1.2 Global Functions That Operate on Lists -- 3.1.3 Accessing List Elements -- 3.1.4 Slicing Lists -- 3.1.5 Lists Operators -- 3.1.6 Lists as Objects -- 3.2 Tuples -- 3.2.1 Introducing Tuples -- 3.3 Dictionaries -- 3.3.1 Introducing Dictionaries -- 3.3.2 Global Functions That Operate on Dictionaries -- 3.3.3 Accessing Dictionary Items -- 3.3.4 Dictionary Operators -- 3.3.5 Dictionaries as Objects -- 3.4 Sets -- 3.4.1 Introducing Sets.
3.4.2 Global Functions That Operate on Sets -- 3.4.3 Accessing Set Elements -- 3.4.4 Set Operators -- 3.4.5 Sets as Objects -- 3.5 Destructuring Assignment -- 3.6 Key Takeaways -- Chapter 4: Controlling the Flow of a Program -- 4.1 Conditional Execution -- 4.1.1 If-Statements -- 4.1.2 If-Else Statements -- 4.1.3 If-Elif-Else Statements -- 4.1.4 If-Statement Strategies -- 4.1.5 Truthy and Falsy Values -- 4.1.6 Conditional Expressions -- 4.2 Repeated Execution -- 4.2.1 While-Statements -- 4.2.2 For-Statements -- 4.2.3 For-Statements with Range -- 4.2.4 Break and Continue -- 4.2.5 Comprehensions -- 4.3 Key Takeaways -- Chapter 5: Custom Functions and Exceptions -- 5.1 Defining Custom Functions -- 5.2 Arguments and Parameters -- 5.3 Names and Scope -- 5.3.1 Local vs. Global -- 5.3.2 Built-in and Nonlocal Scope -- 5.4 Scope vs. Namespace -- 5.5 Organizing Your Code with Modules -- 5.6 Decorators -- 5.7 How Things Go Wrong -- 5.8 Python Exceptions -- 5.9 Handling Exceptions -- 5.10 Raising Your Own Exceptions -- 5.11 Key Takeaways -- Chapter 6: Regular Expressions -- 6.1 Matching Literal Text -- 6.2 Alternation -- 6.3 Defining and Matching Character Classes -- 6.4 Metaclasses -- 6.5 Pattern Sequences -- 6.6 Repeating Patterns with Quantifiers -- 6.7 Anchors -- 6.8 Capturing Groups -- 6.9 Regular Expressions in Python -- 6.10 Project - A Formula Mass Calculator -- 6.11 Key Takeaways -- Chapter 7: Working with Data -- 7.1 A File System Primer -- 7.2 Text Files -- 7.3 Reading and Writing Text Files -- 7.4 Working with Comma-Separated Values (CSV) Files -- 7.5 The csv Module -- 7.6 Reading and Writing Excel Spreadsheet -- 7.6.1 openpyxl Workbook Object -- 7.6.2 openpyxl Worksheet Object -- 7.6.3 openpyxl Cell Object -- 7.7 Project - Generate a Random Sample Layout in a Spreadsheet -- 7.8 Project - Forecast Monthly Sample Processing.
7.9 Managing the File System -- 7.9.1 The Path Object -- 7.9.2 Path Properties -- 7.9.3 Path Attributes -- 7.9.4 Operating On a Path -- 7.9.5 Combining Paths -- 7.9.6 The shutil Module for High-Level File Operations -- 7.10 Walking a File System Tree -- 7.11 Project - Find Duplicate Files -- 7.12 Working with Zip Files -- 7.12.1 ZipFile Object -- 7.12.2 zipfile Path Object -- 7.12.3 Creating Zip Archives -- 7.13 Working with Standard Data Formats -- 7.13.1 JSON - JavaScript Object Notation -- 7.13.2 json Python Module -- 7.13.3 XML - Extensible Markup Language -- 7.13.4 Python XML modules -- 7.13.5 Other Standard Data Formats -- 7.14 Key Takeaways -- Chapter 8: Web Resources -- 8.1 TCP/IP Networks - What You Need to Know -- 8.1.1 Internet Protocol -- 8.1.2 Transmission Control Protocol -- 8.1.3 Connections and Ports -- 8.1.4 Application Layer Protocols -- 8.1.5 IPv4 vs. IPv6 Addresses -- 8.1.6 Proxy Servers -- 8.2 Introduction to Hypertext Transfer Protocol -- 8.2.1 The Uniform Resource Locator -- 8.2.2 Anatomy of an HTTP Request -- 8.2.3 Anatomy of an HTTP Response -- 8.3 Web Services and the Python Requests Module -- 8.3.1 HTTP GET Requests and the Response Object -- 8.3.2 HTTP POST Requests -- 8.3.3 Binary Responses -- 8.3.4 Customizing the Request Object -- 8.3.5 Verifying Certificates and Encryption -- 8.3.6 Other requests Module Options -- 8.4 Project - Print Weather Forecast for a Location -- 8.4.1 National Weather Service API Web Service -- 8.4.2 Getting Forecast URL from Geolocation -- 8.4.3 Loading and Processing Forecast Data -- 8.4.4 Completed Program to Generate Temperature Forecast -- 8.5 Project - Scraping HTML Page Content -- 8.6 Key Takeaways -- Chapter 9: Data Analysis and Visualization -- 9.1 JupyterLab -- 9.2 Scientific Plotting with Matplotlib -- 9.2.1 The pyplot Submodule -- 9.2.2 The pyplot.plot() function.
9.2.3 Customizing a Plot -- 9.2.4 Multiple Curves on a Single Plot -- 9.2.5 Additional Plot Types -- 9.2.6 Multiple Axes on a Single Figure -- 9.2.7 Other Useful Functions -- 9.2.8 Project - Plotting Weather Forecast -- 9.2.9 Project - A Custom Microplate Heat Map -- 9.2.10 Other Scientific Plotting Libraries -- 9.3 NumPy - Numerical Python -- 9.3.1 Creating ndarray Objects -- 9.3.2 Working with ndarray Objects -- 9.3.3 Accessing and Updating ndarray Elements -- 9.3.4 Broadcasting -- 9.4 pandas DataFrame -- 9.4.1 Creating and Inspecting DataFrames -- 9.4.2 Filtering DataFrames -- 9.4.3 Project - A Screening Experiment -- 9.5 SciPy - A Library for Mathematics, Science, and Engineering -- 9.5.1 Descriptive Statistics with SciPy -- 9.5.2 Hypothesis Testing -- 9.5.3 Project - Running Hypothesis Tests on Two Samples -- 9.5.4 Project - Comparing Liquid Handler Syringe Performance -- 9.5.5 Linear Regression -- 9.5.6 Fitting Nonlinear Models to Data -- 9.5.7 Project - Four-Parameter Logistic Regression -- 9.6 Key Takeaways -- Chapter 10: Report Generation -- 10.1 BytesIO Object -- 10.2 Generating Reports in Microsoft Word -- 10.2.1 Document Object -- 10.2.2 Paragraph Object -- 10.2.3 Run Object -- 10.2.4 Picture and InlineShape Objects -- 10.2.5 Table Object -- 10.2.6 Project - Generate a Complete Word Report -- 10.3 Generating Microsoft PowerPoint Presentations -- 10.3.1 Presentation Object -- 10.3.2 Slide Objects -- 10.3.3 SlideShapes Object -- 10.3.4 Length Objects -- 10.3.5 Table Object -- 10.3.6 Project - Generate a PowerPoint Document with Figures and Tables -- 10.4 Generating PDF File Reports -- 10.4.1 ReportLab PDF Generation Process -- 10.4.2 Creating a Canvas Object -- 10.4.3 Setting Canvas Styles -- 10.4.4 Managing Text Blocks with PDFTextObjects -- 10.4.5 Canvas State Stack -- 10.4.6 Drawing Images -- 10.4.7 PLATYPUS for Page Layout.
10.4.8 Project - Generate a Complete PDF Report -- 10.5 Sending Email Programmatically -- 10.5.1 Simple Mail Transfer Protocol -- 10.5.2 SMTP Mail Server -- 10.5.3 Send a Simple Email Message -- 10.5.4 Sending Email Messages over a Secure Connection -- 10.5.5 Building an Email Message with Attachments -- 10.6 Serving Results with an HTTP Server -- 10.7 Key Takeaways -- Chapter 11: Control and Automation -- 11.1 Concurrency in Python -- 11.2 Asynchronous Execution -- 11.3 Concurrent Programs with AsyncIO -- 11.4 Asynchronous Instrument Control and Coordination -- 11.4.1 Project - Integrated Laboratory System Control and Coordination -- 11.5 Communicating over a Serial Port -- 11.5.1 Reading Barcodes from a Serial Port -- 11.5.2 Project - Scanning Sample Tasks into a Running Controller -- 11.6 Execute Remote Commands over HTTP -- 11.6.1 A Basic HTTP Server with aiohttp -- 11.6.2 Routing an HTTP Request to a Custom Python Function -- 11.7 Persistent Network Connections using a WebSocket -- 11.7.1 A User Interface for Asynchronous Networked Programs -- 11.7.2 WebSocketResponse and FileResponse Objects -- 11.7.3 Project - A Browser-Based WebSocket Message Broadcaster -- 11.7.4 Project - A Browser User Interface to Schedule Samples for Analysis -- 11.8 Responding to File System Changes -- 11.8.1 Watching a Directory for Changes with watchfiles -- 11.8.2 File System Monitoring Options -- 11.9 Executing Tasks on a Schedule -- 11.9.1 sched Module -- 11.9.2 Project - Taking and Sending Images on a Schedule -- 11.10 Key Takeaways -- Postface -- References -- Appendix A: ASCII American Standard Code for Information Interchange -- Index -- EULA.
Record Nr. UNINA-9911030980203321
Russo Mark F  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui