The algorithmic beauty of plants / / Przemyslaw Pruskinkiewicz [and six others] |
Pubbl/distr/stampa | New York, [New York] : , : Springer, , 1990 |
Descrizione fisica | 1 online resource (XII, 228 p. 14 illus.) |
Disciplina | 004 |
Collana | The Virtual Laboratory |
Soggetto topico |
Plants - Development - Mathematical models
Plants - Development - Computer simulation L systems Computer graphics |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4613-8476-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Graphical modeling using L-systems -- 1.1 Rewriting systems -- 1.2 DOL-systems -- 1.3 Turtle interpretation of strings -- 1.4 Synthesis of DOL-systems -- 1.5 Modeling in three dimensions -- 1.6 Branching structures -- 1.7 Stochastic L-systems -- 1.8 Context-sensitive L-systems -- 1.9 Growth functions -- 2 Modeling of trees -- 3 Developmental models of herbaceous plants -- 3.1 Levels of model specification -- 3.2 Branching patterns -- 3.3 Models of inflorescences -- 4 Phyllotaxis -- 4.1 The planar model -- 4.2 The cylindrical model -- 5 Models of plant organs -- 5.1 Predefined surfaces -- 5.2 Developmental surface models -- 5.3 Models of compound leaves -- 6 Animation of plant development -- 6.1 Timed DOL-systems -- 6.2 Selection of growth functions -- 7 Modeling of cellular layers -- 7.1 Map L-systems -- 7.2 Graphical interpretation of maps -- 7.3 Microsorium linguaeforme -- 7.4 Dryopteris thelypteris -- 7.5 Modeling spherical cell layers -- 7.6 Modeling 3D cellular structures -- 8 Fractal properties of plants -- 8.1 Symmetry and self-similarity -- 8.2 Plant models and iterated function systems -- Epilogue -- Appendix A Software environment for plant modeling -- A.1 A virtual laboratory in botany -- A.2 List of laboratory programs -- Appendix B About the figures -- Turtle interpretation of symbols. |
Record Nr. | UNINA-9910480999103321 |
New York, [New York] : , : Springer, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The algorithmic beauty of plants / / Przemyslaw Pruskinkiewicz [et al.] |
Pubbl/distr/stampa | New York : , : Springer, , 1990 |
Descrizione fisica | 1 online resource (XII, 228 pages) : 14 illustrations |
Disciplina | 004 |
Collana | The Virtual Laboratory |
Soggetto topico |
Plants - Development - Mathematical models
Plants - Development - Computer simulation L systems Computer graphics |
ISBN | 1-4613-8476-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Graphical modeling using L-systems -- 1.1 Rewriting systems -- 1.2 DOL-systems -- 1.3 Turtle interpretation of strings -- 1.4 Synthesis of DOL-systems -- 1.5 Modeling in three dimensions -- 1.6 Branching structures -- 1.7 Stochastic L-systems -- 1.8 Context-sensitive L-systems -- 1.9 Growth functions -- 2 Modeling of trees -- 3 Developmental models of herbaceous plants -- 3.1 Levels of model specification -- 3.2 Branching patterns -- 3.3 Models of inflorescences -- 4 Phyllotaxis -- 4.1 The planar model -- 4.2 The cylindrical model -- 5 Models of plant organs -- 5.1 Predefined surfaces -- 5.2 Developmental surface models -- 5.3 Models of compound leaves -- 6 Animation of plant development -- 6.1 Timed DOL-systems -- 6.2 Selection of growth functions -- 7 Modeling of cellular layers -- 7.1 Map L-systems -- 7.2 Graphical interpretation of maps -- 7.3 Microsorium linguaeforme -- 7.4 Dryopteris thelypteris -- 7.5 Modeling spherical cell layers -- 7.6 Modeling 3D cellular structures -- 8 Fractal properties of plants -- 8.1 Symmetry and self-similarity -- 8.2 Plant models and iterated function systems -- Epilogue -- Appendix A Software environment for plant modeling -- A.1 A virtual laboratory in botany -- A.2 List of laboratory programs -- Appendix B About the figures -- Turtle interpretation of symbols. |
Record Nr. | UNINA-9910783136103321 |
New York : , : Springer, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The algorithmic beauty of plants / / Przemyslaw Pruskinkiewicz [et al.] |
Pubbl/distr/stampa | New York : , : Springer, , 1990 |
Descrizione fisica | 1 online resource (XII, 228 pages) : 14 illustrations |
Disciplina | 004 |
Collana | The Virtual Laboratory |
Soggetto topico |
Plants - Development - Mathematical models
Plants - Development - Computer simulation L systems Computer graphics |
ISBN | 1-4613-8476-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Graphical modeling using L-systems -- 1.1 Rewriting systems -- 1.2 DOL-systems -- 1.3 Turtle interpretation of strings -- 1.4 Synthesis of DOL-systems -- 1.5 Modeling in three dimensions -- 1.6 Branching structures -- 1.7 Stochastic L-systems -- 1.8 Context-sensitive L-systems -- 1.9 Growth functions -- 2 Modeling of trees -- 3 Developmental models of herbaceous plants -- 3.1 Levels of model specification -- 3.2 Branching patterns -- 3.3 Models of inflorescences -- 4 Phyllotaxis -- 4.1 The planar model -- 4.2 The cylindrical model -- 5 Models of plant organs -- 5.1 Predefined surfaces -- 5.2 Developmental surface models -- 5.3 Models of compound leaves -- 6 Animation of plant development -- 6.1 Timed DOL-systems -- 6.2 Selection of growth functions -- 7 Modeling of cellular layers -- 7.1 Map L-systems -- 7.2 Graphical interpretation of maps -- 7.3 Microsorium linguaeforme -- 7.4 Dryopteris thelypteris -- 7.5 Modeling spherical cell layers -- 7.6 Modeling 3D cellular structures -- 8 Fractal properties of plants -- 8.1 Symmetry and self-similarity -- 8.2 Plant models and iterated function systems -- Epilogue -- Appendix A Software environment for plant modeling -- A.1 A virtual laboratory in botany -- A.2 List of laboratory programs -- Appendix B About the figures -- Turtle interpretation of symbols. |
Record Nr. | UNINA-9910827094003321 |
New York : , : Springer, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals [[electronic resource] /] / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910457254903321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals [[electronic resource] /] / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910784591903321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals / / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910824561503321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals / J. Mishra, S. N. Mishra |
Autore | Mishra, Jibitesh |
Pubbl/distr/stampa | Amsterdam : Elsevier B. V., 2007 |
Descrizione fisica | xiii, 258 p. : ill. ; 24 cm |
Disciplina | 006.37 |
Altri autori (Persone) | Mishra, Sarojananda N.author |
Collana | Mathematics in science and engineering, 0076-5392 ; 209 |
Soggetto topico |
Computer vision
L systems Fractals |
ISBN | 0444528326 |
Classificazione |
AMS 28A80
AMS 68U05 AMS 68T45 AMS 68T10 LC TA1634.M56 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002133209707536 |
Mishra, Jibitesh | ||
Amsterdam : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Lindenmayer systems, fractals, and plants / Przemyslaw Prusinkiewicz, James Hanan |
Autore | Prusinkiewicz, Przemyslaw |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1989 |
Descrizione fisica | iv, 120 p. : ill. ; 25 cm |
Disciplina | 519.8 |
Altri autori (Persone) | Hanan, Jamesauthor |
Collana | Lecture notes in biomathematics, 0341-633X ; 79 |
Soggetto topico |
Fractals
L systems Plants - Development - Computer simulation |
ISBN | 3540970924 |
Classificazione |
AMS 28A80
AMS 68U05 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001083399707536 |
Prusinkiewicz, Przemyslaw | ||
Berlin : Springer-Verlag, 1989 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
The mathematical theory of L systems / Grzegorz Rozenberg, Arto Salomaa |
Autore | Rozenberg, Grzegorz |
Pubbl/distr/stampa | New York : Academic Press, 1980 |
Descrizione fisica | xvi, 352 p. : ill. ; 24 cm. |
Disciplina | 510.8 |
Altri autori (Persone) | Salomaa, Artoauthor |
Collana | Pure and applied mathematics. A series of monographs & textbooks [Academic Press], 0079-8169 ; 90 |
Soggetto topico |
Formal languages
L systems |
ISBN | 0125971400 |
Classificazione | AMS 68Q45 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001120409707536 |
Rozenberg, Grzegorz | ||
New York : Academic Press, 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|