Advances and New Developments in Fuzzy Logic and Technology : Selected Papers from IWIFSGN'2019 – The Eighteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets held on October 24-25, 2019 in Warsaw, Poland / / edited by Krassimir T. Atanassov, Vassia Atanassova, Janusz Kacprzyk, Andrzej Kałuszko, Maciej Krawczak, Jan W. Owsiński, Sotir S. Sotirov, Evdokia Sotirova, Eulalia Szmidt, Sławomir Zadrożny |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (334 pages) |
Disciplina | 511.3 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Engineering—Data processing Computational Intelligence Data Engineering Lògica difusa |
Soggetto genere / forma |
Llibres electrònics
Congressos |
ISBN | 3-030-77716-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Issues in the Representation, Processing and Analyses of Uncertain Information -- Intuitionistic Fuzzy Temporal-Modal Operators -- 1 Introduction -- 2 Preliminary Remarks -- 3 Definitions of the Intuitionistic Fuzzy Implications 139, ..., 185 over Intuitionistic Fuzzy Sets -- 4 Intuitionistic Fuzzy Temporal-Modal Operators ``Necessity'' and ``Possibility'' -- 5 Conclusion -- References -- In Direction of Intuitionistic Fuzzy Arithmetic -- 1 Introduction -- 2 Intuitionistic Fuzzy Set and Type 2 Fuzzy Set -- 3 Alternative Definition of the Fuzzy Set Type 2 -- 4 Conclusions -- References -- A New Approach for an Intuitionistic Fuzzy Sugeno Integral Using Morphological Gradient Edge Detector -- 1 Introduction -- 2 Sugeno Measures and Fuzzy Integrals -- 2.1 Monotonic Measures -- 2.2 Sugeno Measure -- 2.3 Sugeno Integral -- 3 Sugeno Integral with Intuitionistic Fuzzy Sets -- 3.1 Intuitionistic Fuzzy Set -- 3.2 Sugeno Integral with Intuitionistic Fuzzy Set -- 3.3 Intuitionistic Fuzzy Sugeno Integral Using πA = 0.4 -- 4 Edge Detection -- 5 Simulation Results -- 6 Conclusion -- References -- M-Probabilistic Versions of the Strong Law of Large Numbers -- 1 Introduction -- 2 Selected Elements of M-Probability Theory -- 3 M-Probabilistic Versions of the Strong Law of Large Numbers -- 4 An Illustrative Example -- 5 Conclusions -- References -- Intuitionistic Fuzzy Probability and Almost Everywhere Convergence -- 1 Introduction -- 2 IF-Event, IF-Probability, IF-State and IF-Observable -- 3 Product Operation, Joint IF-Observable and Function of Several IF-Observables -- 4 Lower and Upper Limits, m-Almost Everywhere Convergence -- 5 P-Almost Everywhere Convergence -- 6 Conclusion -- References -- Classification of Images by Using Distance Functions Defined on Intuitionistic Fuzzy Sets -- 1 Introduction.
2 Intuitionistic Fuzzy Sets -- 3 Preparation of the Data -- 3.1 Pre-processing of the Images -- 3.2 Pre-processing of the Data -- 3.3 Classification of the Images -- 4 Experimental Results -- 5 Conclusions -- References -- A Study on Local Properties and Local Contrast in Fuzzy Setting -- 1 Introduction -- 2 Preliminaries -- 3 Local Contrast and Local Properties -- 4 Notes on Application -- 5 Conclusions -- References -- Note on the Zadeh's Extension Principle Based on Fuzzy Variable Approach -- 1 Introduction -- 2 Fuzzy Variables -- 2.1 Generalized Measure Theory -- 2.2 From Possibility Measures to Fuzzy Sets -- 2.3 Non-interacting Sets -- 2.4 Extension Principles -- 3 Conclusions -- References -- OFNBee Method Applied for Solution of Problems with Multiple Extremes -- 1 Introduction -- 2 OFN Ordered Fuzzy Numbers -- 3 Test Functions -- 4 Results -- 5 Conclusions -- References -- Imprecision Indexes of Oriented Fuzzy Numbers -- 1 Introduction -- 2 Oriented Fuzzy Numbers - Basic Facts -- 3 Evaluation of Imprecision for Oriented Fuzzy Numbers -- 4 Imprecision Evaluation for Trapezoidal Oriented Fuzzy Numbers -- 5 Portfolio Diversification -- 6 Final Remarks -- References -- Detailed Evaluation of Fuzzy Sets in Rule Conditions as a Key for Accurate and Explainable Rule-Based Systems -- 1 Introduction -- 2 Methods -- 2.1 Design of Fuzzy Membership Functions -- 2.2 Evaluation of Fuzzy Membership Functions -- 2.3 Fuzzy Rules Design and Fuzzy Belief Measure Calculation -- 3 Experiments -- 4 Discussion and Conclusions -- References -- Tests for Estimates of the Tolerance Relation Based on Pairwise Comparisons in Binary and Multivalent Form -- 1 Introduction -- 2 Estimation Problem, Form of Estimators and Their Properties for Binary Comparisons -- 2.1 Estimation Problem for Binary Comparisons -- 2.2 The Form of Estimator and Its Properties. 3 Tests for Verification of an Estimate of Tolerance Relation for Binary Comparisons -- 4 Estimation Problem, Form of Estimators and Their Properties for Multivalent Comparisons -- 4.1 Estimation Problem for Multivalent Comparisons -- 4.2 The Form of Estimator and Its Properties -- 5 Tests for Verification of an Estimate of Tolerance Relation for Multivalent Comparisons -- 6 Summary and Conclusions -- References -- Applications in Healthcare, Medicine, and Sports -- Opportunity for Obtaining an Intuitionistic Fuzzy Estimation for Health-Related Quality of Life Data -- 1 Introduction -- 2 Multi Layer Perceptron -- 3 Discussion -- 4 Conclusion -- References -- InterCriteria Analysis of the Blood Group Distribution of Patients of Saint Anna Hospital in 2015-2019 -- 1 Introduction -- 2 Input Data -- 3 Application of the InterCriteria Analysis - Results and Discussion -- 4 Conclusion -- References -- Application of the InterCriteria Analysis Method to a Data of Malignant Melanoma Disease for the Burgas Region for 2014-2018 -- 1 Introduction -- 2 An Application of the ICA -- 2.1 Applying ICA Approach for International Statistical Classification of Diseases and Health Problems Group for Malignant Melanoma of Skin -- 2.2 Applying ICA Approach for Marital Status and Gender Data -- 3 Discussions -- 4 Conclusion -- References -- A Generalized Net Model of the Abdominal Aorta and Its Branches as a Part of the Vascular System -- 1 Introduction -- 2 A Generalized Net Model of the Abdominal Aorta and Its Branches as a Part of the Vascular System -- 3 Conclusion -- References -- A Generalized Net Model of the Human Body Excretory System -- 1 Introduction -- 2 The Generalized Net Model -- 3 Conclusion -- References -- Clustering of InterCriteria Analysis Data Using a Malignant Neoplasms of the Digestive Organs Data -- 1 Introduction -- 2 InterCriteria Analysis. 3 Self Organizing Map Neural Networks -- 4 Testing with Data for Malignant Neoplasms of the Digestive Organs Data -- 5 Conclusion -- References -- Fuzzy-Based Algorithm for QRS Detection -- 1 Introduction -- 2 Overview of Algorithm -- 2.1 The Preprocessing Stage -- 2.2 Estimation of the Amplitude Threshold with Fuzzy c-Median Clustering Method -- 3 Numerical Experiment and Results -- 3.1 Data -- 3.2 Results -- 4 Conclusion -- References -- Influence of the Indoor Hockey "Push & -- Flick" Methodology on the Ball Speed During the Penalty Corner Shooting -- 1 Introduction -- 2 Methodology -- 3 InterCriteria Analysis Background -- 4 Results and Discussion from the Study on the Speed of the Ball When Executing a Penalty Corner Using Flick -- 4.1 Variation Analysis of the Speed of the Ball When Executing a Penalty Corner in Goal-Scoring Areas -- 4.2 InterCriteria Analysis of the Speed of the Ball When Executing a Penalty Corner in Goal-Scoring Areas -- 5 Conclusion -- References -- InterCriteria Analysis of Data Obtained from University Students Practicing Sports Activities -- 1 Introduction -- 2 Presentation of the Input Data -- 3 Application of the InterCriteria Analysis -- 4 Conclusions -- References -- Applications in Industry, Business and Critical Infrastructure -- Forest Fire Analysis Based on InterCriteria Analysis -- 1 Introduction -- 2 Forest Fires Data -- 3 Methods Theoretical Background -- 3.1 Methodology of Lubenov -- 4 InterCriteria Analysis -- 5 Results and Discussion -- 6 Conclusion -- References -- Generalized Net Model of Overall Telecommunication System with Queuing -- 1 Introduction -- 2 Classical Conceptual Model of Overall Telecommunication System -- 2.1 Base Virtual Devices Representation and Their Parameters -- 2.2 Types and Names of the Base Virtual Devices -- 2.3 Comprise Virtual Devices. 3 Generalized Net Model of Overall Telecommunication System with Queuing -- 3.1 Generalized Net Model of the Dialing Stage -- 3.2 Generalized Net Model of the Switching Stage -- 3.3 Generalized Net Model of the Ringing Stage -- 3.4 Generalized Net Model of the Communication Stage -- 4 Analytical Modeling of the Overall Telecommunication System Using the GN Model -- 4.1 Static and Dynamic Parameters of the Model -- 4.2 Main Assumptions -- 4.3 Equation for the Traffic Intensity of the Called Terminals -- 5 Conclusions -- References -- Generalized Net Model of Information Security Activities in the Automated Information Systems -- 1 Introduction -- 2 Generalized Net Model of Information Security Activities in Automated Information Systems -- 3 Conclusion -- References -- Use of OFN in the Short-Term Prediction of Exchange Rates -- 1 Introduction -- 2 Exchange Rates and Currency Markets -- 3 Fuzzy Observation of the Exchange Rate of Euro in Relation to USD -- 4 Formalizing the Description of Fuzzy Observation -- 5 Conclusion -- References -- Ordered Fuzzy Numbers for IoT Smart Home Solution -- 1 Introduction -- 2 The Idea of IoT and Intelligent - Smart Homes -- 3 Ordered Fuzzy Numbers for Smart Home Heating and Cooling System -- 4 The Real Test of Proposed Method -- 5 Conclusion -- References -- When Two-Constraint Binary Knapsack Problem is Equivalent to Classical Knapsack Problem? -- 1 Introduction -- 2 Definitions -- 3 Lagrange and Dual Estimations -- 4 Probabilistic Analysis -- 5 Concluding Remarks -- References -- Author Index. |
Record Nr. | UNINA-9910488700503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Explainable neural networks based on fuzzy logic and multi-criteria decision tools / / József Dombi, Orsolya Csiszár |
Autore | Dombi József |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (186 pages) |
Disciplina | 006.32 |
Collana | Studies in fuzziness and soft computing |
Soggetto topico |
Fuzzy logic
Neural networks (Computer science) Machine learning Artificial intelligence Xarxes neuronals (Informàtica) Lògica difusa Aprenentatge automàtic |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-72280-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- Introduction-Aggregation and Intelligent Decision -- Contents -- List of Figures -- List of Tables -- Elements of Nilpotent Fuzzy Logic -- 1 Connectives: Conjunctions, Disjunctions and Negations -- 1.1 Introduction -- 1.2 Preliminaries -- 1.2.1 Negations -- 1.2.2 Triangular Norms and Conorms -- 1.3 Characterization of Strict Negation Operators -- 1.4 Nilpotent Connective Systems -- 1.4.1 Structural Properties of Connective Systems -- 1.4.2 Consistent Connective Systems -- 1.5 Summary -- References -- 2 Implications -- 2.1 Introduction -- 2.2 Preliminaries -- 2.3 R-Implications in Bounded Systems -- 2.4 S-Implications in Bounded Systems -- 2.4.1 Properties of iSn, iSd and iSc -- 2.4.2 S-Implications and the Ordering Property -- 2.5 A Comparison of Implications in Bounded Systems -- 2.6 Min and Max Operators in Nilpotent Connective Systems -- 2.7 Summary -- References -- 3 Equivalences -- 3.1 Introduction -- 3.2 Preliminaries -- 3.3 Equivalences in Bounded Systems -- 3.3.1 Properties of ec(x,y) and ed(x,y) -- 3.4 Dual Equivalences -- 3.4.1 Properties of bared and barec -- 3.5 Arithmetic Mean Operators in Bounded Systems -- 3.6 Aggregated Equivalences -- 3.6.1 Properties of the Aggregated Equivalence Operator -- 3.7 Applications -- 3.8 Summary -- References -- 4 Modifiers and Membership Functions in Fuzzy Sets -- 4.1 Introduction -- 4.2 Unary Operators in Nilpotent Logical Systems -- 4.2.1 Possibility and Necessity as Unary Operators Derived from Multivariable Operators -- 4.2.2 Drastic Unary Operators -- 4.2.3 Composition Rules -- 4.2.4 Multivariable Operators Derived from Unary Operators -- 4.2.5 A General Framework: The α, β, γ- Model -- 4.3 Unary Operators Induced by Negation Operators -- 4.4 Membership Functions -- 4.5 Non-membership Functions -- 4.6 Summary -- References -- Decision Operators.
5 Aggregative Operators -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Shifting Transformations on the Generator Functions - A General Parametric Formula -- 5.4 The Weighted General Operator -- 5.5 Properties of the General and the Weighted General Operator -- 5.5.1 The De Morgan Property -- 5.5.2 Bisymmetry -- 5.6 The Two-Variable General and Weighted Aggregative Operator -- 5.7 Summary -- References -- 6 Preference Operators -- 6.1 Introduction -- 6.2 Operators of Nilpotent Systems - A General Framework -- 6.2.1 Normalization of the Generator Functions -- 6.2.2 The General Parametric Operator -- 6.2.3 The Unary Operators: Negation, Modifiers and Hedges -- 6.3 Preference Modeling -- 6.4 Properties of the Preference Operator -- 6.4.1 Basic Properties -- 6.4.2 Ordering Properties -- 6.4.3 Preference and Negation -- 6.4.4 Preference, Conjunction and Disjunction -- 6.4.5 Preference and Aggregation -- 6.4.6 Additive Transitivity -- 6.4.7 Bisymmetry and the Common Base Property -- 6.4.8 Preference and Unary Operators -- 6.5 Summary -- References -- Learning and Neural Networks -- 7 Squashing Functions -- 7.1 Introduction -- 7.2 Łukasiewicz Operators -- 7.3 Approximation of the Cutting Function -- 7.3.1 The Sigmoid Function -- 7.3.2 The Interval [a,b] Squashing Function -- 7.3.3 The Error of the Approximation -- 7.4 Approximation of Piecewise Linear Membership Functions -- 7.5 Summary -- References -- 8 Learning Rules -- 8.1 Introduction -- 8.2 Problem Definition and Solution Outline -- 8.3 Preliminaries -- 8.4 The Structure and Representation of the Rules -- 8.5 The Optimization Process -- 8.5.1 Rule Optimization by GA -- 8.5.2 A Gradient-Based Local Optimization of Memberships -- 8.6 Applications -- 8.7 Summary -- References -- 9 Interpretable Neural Networks Based on Continuous-Valued Logic and Multi-criteria Decision Operators -- 9.1 Introduction. 9.2 Related Work -- 9.3 Nilpotent Logical Systems and Multicriteria Decision Tools -- 9.4 Nilpotent Logic-Based Interpretation of Neural Networks -- 9.5 Playground Examples -- 9.5.1 XOR -- 9.5.2 Preference -- 9.6 Summary -- References -- 10 Conclusions. |
Record Nr. | UNINA-9910482999203321 |
Dombi József | ||
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fuzzy logic hybrid extensions of neural and optimization algorithms : theory and applications / / editors, Oscar Castillo, Patricia Melin |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (ix, 383 pages) : illustrations |
Disciplina | 511.3 |
Collana | Studies in computational intelligence |
Soggetto topico |
Fuzzy logic
Neural networks (Computer science) Soft computing Lògica difusa Xarxes neuronals (Informàtica) Optimització matemàtica Informàtica tova Algorismes |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-68776-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Estimation of the Number of Filters in the Convolution Layers of a Convolutional Neural Network Using a Fuzzy Logic System -- 1 Introduction -- 2 Literature Review -- 2.1 Convolutional Neural Networks -- 2.2 GSA -- 2.3 FGSA -- 3 Proposed Method -- 4 Results and Discussion -- 5 Conclusions -- References -- Optimization of Membership Function Parameters for Fuzzy Controllers in Cruise Control Problem Using the Multi-verse Optimizer -- 1 Introduction -- 2 Fuzzy Systems -- 2.1 Mamdani Model -- 2.2 Sugeno Model -- 3 Control Systems -- 4 Metaheuristics and Multi-verse Optimizer -- 4.1 Multi-verse Optimizer -- 4.2 Applications of MVO -- 5 Test and Results -- 5.1 Benchmark Function Test and Results -- 5.2 Applications Test and Results -- 6 Conclusions -- References -- Performance Analysis of a Distributed Steady-State Genetic Algorithm Using Low-Power Computers -- 1 Introduction -- 2 Distributed Steady-State Genetic Algorithm -- 2.1 Application of Distributed Steady-State Genetic Algorithm in the n-Queens Problem -- 2.2 Application of Distributed Steady-State Genetic Algorithm in the Travelling Salesman Problem -- 3 Master-Slave Low Power Architecture -- 3.1 Rationale on Master-Slave Architecture Starting Procedure -- 3.2 Function Evaluation Task on Slave-Devices -- 3.3 Fail-Safe Algorithm on Master-Device -- 4 Computational Results -- 4.1 Experimental Setup -- 4.2 n-Queens Problem Experimental Arrangement Results -- 4.3 Travelling Salesman Problem Results -- 5 Conclusions and Future Work -- References -- Ensemble Recurrent Neural Networks for Complex Time Series Prediction with Integration Methods -- 1 Introduction -- 2 Problem Statement and Proposed Method -- 2.1 Analyze the Time Series -- 2.2 Creation of the Recurrent Neural Network -- 2.3 Integration by Average -- 2.4 Integration by Weighted Average.
2.5 Integration by Gating Network -- 2.6 Type-1 and Type-2 Fuzzy System Integration -- 2.7 Generalized Type-2 Fuzzy System -- 3 Simulation Results -- 4 Conclusions -- References -- Genetic Optimization of Ensemble Neural Network Architectures for Prediction of COVID-19 Confirmed and Death Cases -- 1 Introduction -- 2 Basic Concepts -- 2.1 Artificial Neural Networks -- 2.2 Nonlinear Autoregressive Neural Network -- 2.3 Fuzzy Logic -- 2.4 Genetic Algorithms -- 3 Proposed Method -- 4 Results of the Experiment -- 4.1 Genetic Algorithms -- 5 Conclusions -- References -- Optimization of Modular Neural Networks for the Diagnosis of Cardiovascular Risk -- 1 Introduction -- 2 Literature Review -- 2.1 Flower Pollination Algorithm -- 2.2 Bird Swarm Algorithm -- 2.3 Blood Pressure and Hypertension -- 2.4 Cardiovascular Disease and Heart Age -- 2.5 Framingham Heart Study -- 3 Proposed Method -- 4 Results -- 5 Conclusions and Future Work -- References -- A Review on the Cuckoo Search Algorithm -- 1 Introduction -- 2 An Analogy with Nature -- 2.1 Cuckoo Search Algorithm -- 2.2 Algorithm Rules -- 2.3 Levy Flights -- 2.4 Mathematical Formulas -- 2.5 Flowchart CS -- 3 Implementation of Levy Flights in Other Algorithms -- 4 Variants of the Cuckoo Search Algorithm -- 5 Applications -- 6 Conclusions -- References -- An Improved Convolutional Neural Network Based on a Parameter Modification of the Convolution Layer -- 1 Introduction -- 2 Background and Basic Concepts -- 2.1 Convolutional Neural Network Concepts -- 2.2 Edge Detectors -- 2.3 Sobel Operator -- 2.4 Prewitt Operator -- 2.5 Laplacian Operator -- 3 Proposed Approach -- 3.1 Proposed Architecture -- 3.2 Convolution Kernel Initialization -- 4 Experiments -- 4.1 Case Study MNIST Handwritten Digits -- 4.2 Case Study MNIST American Sign Language -- 4.3 Case Study Mexican Sign Language Database -- 5 Conclusions. References -- Parameter Optimization of a Convolutional Neural Network Using Particle Swarm Optimization -- 1 Introduction -- 2 Convolutional Neural Network -- 2.1 Input Layer -- 2.2 Convolution Layer -- 2.3 Non-linearity Layer -- 2.4 Pooling Layer -- 2.5 Classifier Layer -- 3 Particle Swarm Optimization -- 3.1 Global Best PSO -- 3.2 Local Best PSO -- 4 Proposed Method -- 4.1 Parameter Optimization of the CNN -- 4.2 CNN-PSO Optimization Process -- 5 Experiments and Results -- 5.1 Exploratory Experiment -- 5.2 American Sign Language Alphabet (ASL Alphabet) Experiment -- 5.3 American Sign Language MNIST Experiment -- 5.4 Analysis and Comparison of Results -- 6 Conclusion and Future Work -- References -- One-Dimensional Bin Packing Problem: An Experimental Study of Instances Difficulty and Algorithms Performance -- 1 Introduction -- 2 The Bin Packing Problem -- 2.1 Instances -- 2.2 Index Description -- 2.3 Performance Measures -- 3 Algorithms -- 3.1 First Fit Decreasing (FFD) -- 3.2 Best Fit Decreasing (BFD) -- 3.3 Minimum Bin Slack (MBS) -- 3.4 GGA-CGT -- 4 Results -- 5 Experimental Analysis -- 5.1 Class BPP.25 -- 5.2 Class BPP.5 -- 5.3 Class BPP.75 -- 5.4 Class BPP1 -- 6 Conclusions and Future Work -- References -- Looking for Emotions in Evolutionary Art -- 1 Introduction -- 2 In Search of Lost Emotions -- 2.1 Humans in the EA Loop -- 3 Methodology: Analysis of Emotions in the Era of Evolutionary Art -- 3.1 The Line -- 3.2 Simplifying the Problem -- 3.3 Evospace-Interactive Module -- 4 Results -- 4.1 Analyzing Formal Elements -- 4.2 Are Emotions Properly Understood? -- 4.3 Audience Analysis -- 4.4 International Art Competitions -- 5 Conclusion -- References -- Review of Hybrid Combinations of Metaheuristics for Problem Solving Optimization -- 1 Introduction -- 2 Review of Hybrid or Combined Metaheuristics -- 3 Discussion -- 4 Conclusions. References -- GPU Accelerated Membrane Evolutionary Artificial Potential Field for Mobile Robot Path Planning -- 1 Introduction -- 2 Fundamentals -- 2.1 Membrane Computing -- 2.2 Evolutionary Computation -- 2.3 Artificial Potential Field Method -- 3 GPU Accelerated MemEAPF -- 4 Results -- 4.1 Path Planning Results -- 4.2 Performance Results -- 5 Conclusions -- References -- Optimization of the Internet Shopping Problem with Shipping Costs -- 1 Introduction -- 1.1 Definition of the Problem -- 2 The General Structure of the Memetic Algorithm -- 2.1 Selection by Tournament -- 2.2 Crossover Operator -- 2.3 Mutation Operator -- 2.4 Local Search -- 2.5 Memetic Algorithm (MAIShOP) -- 3 Computational Experiments -- 4 Conclusions -- References -- Multiobjective Algorithms Performance When Solving CEC09 Test Instances -- 1 Introduction -- 2 Multiobjective Optimization -- 3 CEC09 Test Functions -- 4 Multiobjective Optimization Algorithms -- 5 Performance Metrics of Multiobjective Optimization -- 6 Computational Experiments -- 7 Conclusion and Future Work -- References -- Analysis of the Efficient Frontier of the Portfolio Selection Problem Instance of the Mexican Capital Market -- 1 Introduction -- 2 Multiobjective Algorithms in Comparison -- 3 CellDE -- 4 GDE3 -- 5 IBEA -- 6 MOCell -- 7 NSGA-II -- 8 NSGA-III -- 9 OMOPSO -- 10 PAES -- 11 SPEA2 -- 12 Computational Experiments -- 13 Conclusions -- References -- Multi-objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters -- 1 Introduction -- 2 Elements of Fuzzy Theory -- 2.1 Fuzzy Sets -- 2.2 Generalized Fuzzy Numbers -- 2.3 Addition Operator -- 2.4 Graded Mean Integration (GMI) -- 2.5 Order Relation in the Set of the Trapezoidal Fuzzy Numbers -- 2.6 Pareto Dominance -- 3 Multi-objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters -- 4 Proposal Algorithm T-NSGA-II. 4.1 Representation of the Solutions -- 4.2 Evaluating the Solutions -- 4.3 One-Point Crossover Operator -- 4.4 Uniform Mutation Operator -- 4.5 Initial Population -- 4.6 Population Sorting -- 4.7 No-Dominated Sorting -- 4.8 Calculating the Crowding Distance (Deb et al. 2000) -- 4.9 Calculating the Spatial Spread Deviation (SSD) (Santiago et al. 2019) -- 4.10 Pseudocode of the T-NSGA-II Algorithm -- 5 Proposed Strategy to Assess the Performance of Multi-objective Algorithms in the Fuzzy Trapezoidal Numbers Domain -- 6 Computational Experiments -- 7 Conclusions -- References -- A Study on the Use of Hyper-heuristics Based on Meta-Heuristics for Dynamic Optimization -- 1 Introduction -- 2 Background and Definitions -- 2.1 Dynamic Multi-objective Optimization Problem -- 2.2 Dynamic Multi-objective Evolutionary Algorithm -- 2.3 Hyper-heuristic -- 2.4 Indicators to Evaluate DMOEAs Performance Over DMOPs -- 3 Relevant Properties to Consider from DMOPs -- 3.1 Objective Function -- 3.2 Decision Variables -- 3.3 Constraints -- 4 Known Hyper-heuristic Approaches Towards Solving DOPs -- 5 Proposed Checklist and Design Guide for Dynamic Hyper-heuristics -- 6 Case Studies Using the Proposed Guide and Checklist -- 6.1 Case Study 1 -- 6.2 Case Study 2 -- 7 Conclusions and Future Work -- References -- On the Adequacy of a Takagi-Sugeno-Kang Protocol as an Empirical Identification Tool for Sigmoidal Allometries in Geometrical Space -- 1 Introduction -- 2 Methods -- 2.1 Model of Complex Allometry -- 2.2 TSK Fuzzy Model -- 2.3 Data -- 2.4 Reproducibility Assessment -- 2.5 TSK Identification Procedures -- 2.6 Piecewise-Linear Schemes -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- A New Hybrid Method Based on ACO and PSO with Fuzzy Dynamic Parameter Adaptation for Modular Neural Networks Optimization -- 1 Introduction -- 2 Proposed Method. 2.1 Ant System and ACO Algorithm. |
Record Nr. | UNINA-9910483557103321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|