top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances and New Developments in Fuzzy Logic and Technology : Selected Papers from IWIFSGN'2019 – The Eighteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets held on October 24-25, 2019 in Warsaw, Poland / / edited by Krassimir T. Atanassov, Vassia Atanassova, Janusz Kacprzyk, Andrzej Kałuszko, Maciej Krawczak, Jan W. Owsiński, Sotir S. Sotirov, Evdokia Sotirova, Eulalia Szmidt, Sławomir Zadrożny
Advances and New Developments in Fuzzy Logic and Technology : Selected Papers from IWIFSGN'2019 – The Eighteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets held on October 24-25, 2019 in Warsaw, Poland / / edited by Krassimir T. Atanassov, Vassia Atanassova, Janusz Kacprzyk, Andrzej Kałuszko, Maciej Krawczak, Jan W. Owsiński, Sotir S. Sotirov, Evdokia Sotirova, Eulalia Szmidt, Sławomir Zadrożny
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (334 pages)
Disciplina 511.3
Collana Advances in Intelligent Systems and Computing
Soggetto topico Computational intelligence
Engineering—Data processing
Computational Intelligence
Data Engineering
Lògica difusa
Soggetto genere / forma Llibres electrònics
Congressos
ISBN 3-030-77716-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Issues in the Representation, Processing and Analyses of Uncertain Information -- Intuitionistic Fuzzy Temporal-Modal Operators -- 1 Introduction -- 2 Preliminary Remarks -- 3 Definitions of the Intuitionistic Fuzzy Implications 139, ..., 185 over Intuitionistic Fuzzy Sets -- 4 Intuitionistic Fuzzy Temporal-Modal Operators ``Necessity'' and ``Possibility'' -- 5 Conclusion -- References -- In Direction of Intuitionistic Fuzzy Arithmetic -- 1 Introduction -- 2 Intuitionistic Fuzzy Set and Type 2 Fuzzy Set -- 3 Alternative Definition of the Fuzzy Set Type 2 -- 4 Conclusions -- References -- A New Approach for an Intuitionistic Fuzzy Sugeno Integral Using Morphological Gradient Edge Detector -- 1 Introduction -- 2 Sugeno Measures and Fuzzy Integrals -- 2.1 Monotonic Measures -- 2.2 Sugeno Measure -- 2.3 Sugeno Integral -- 3 Sugeno Integral with Intuitionistic Fuzzy Sets -- 3.1 Intuitionistic Fuzzy Set -- 3.2 Sugeno Integral with Intuitionistic Fuzzy Set -- 3.3 Intuitionistic Fuzzy Sugeno Integral Using πA = 0.4 -- 4 Edge Detection -- 5 Simulation Results -- 6 Conclusion -- References -- M-Probabilistic Versions of the Strong Law of Large Numbers -- 1 Introduction -- 2 Selected Elements of M-Probability Theory -- 3 M-Probabilistic Versions of the Strong Law of Large Numbers -- 4 An Illustrative Example -- 5 Conclusions -- References -- Intuitionistic Fuzzy Probability and Almost Everywhere Convergence -- 1 Introduction -- 2 IF-Event, IF-Probability, IF-State and IF-Observable -- 3 Product Operation, Joint IF-Observable and Function of Several IF-Observables -- 4 Lower and Upper Limits, m-Almost Everywhere Convergence -- 5 P-Almost Everywhere Convergence -- 6 Conclusion -- References -- Classification of Images by Using Distance Functions Defined on Intuitionistic Fuzzy Sets -- 1 Introduction.
2 Intuitionistic Fuzzy Sets -- 3 Preparation of the Data -- 3.1 Pre-processing of the Images -- 3.2 Pre-processing of the Data -- 3.3 Classification of the Images -- 4 Experimental Results -- 5 Conclusions -- References -- A Study on Local Properties and Local Contrast in Fuzzy Setting -- 1 Introduction -- 2 Preliminaries -- 3 Local Contrast and Local Properties -- 4 Notes on Application -- 5 Conclusions -- References -- Note on the Zadeh's Extension Principle Based on Fuzzy Variable Approach -- 1 Introduction -- 2 Fuzzy Variables -- 2.1 Generalized Measure Theory -- 2.2 From Possibility Measures to Fuzzy Sets -- 2.3 Non-interacting Sets -- 2.4 Extension Principles -- 3 Conclusions -- References -- OFNBee Method Applied for Solution of Problems with Multiple Extremes -- 1 Introduction -- 2 OFN Ordered Fuzzy Numbers -- 3 Test Functions -- 4 Results -- 5 Conclusions -- References -- Imprecision Indexes of Oriented Fuzzy Numbers -- 1 Introduction -- 2 Oriented Fuzzy Numbers - Basic Facts -- 3 Evaluation of Imprecision for Oriented Fuzzy Numbers -- 4 Imprecision Evaluation for Trapezoidal Oriented Fuzzy Numbers -- 5 Portfolio Diversification -- 6 Final Remarks -- References -- Detailed Evaluation of Fuzzy Sets in Rule Conditions as a Key for Accurate and Explainable Rule-Based Systems -- 1 Introduction -- 2 Methods -- 2.1 Design of Fuzzy Membership Functions -- 2.2 Evaluation of Fuzzy Membership Functions -- 2.3 Fuzzy Rules Design and Fuzzy Belief Measure Calculation -- 3 Experiments -- 4 Discussion and Conclusions -- References -- Tests for Estimates of the Tolerance Relation Based on Pairwise Comparisons in Binary and Multivalent Form -- 1 Introduction -- 2 Estimation Problem, Form of Estimators and Their Properties for Binary Comparisons -- 2.1 Estimation Problem for Binary Comparisons -- 2.2 The Form of Estimator and Its Properties.
3 Tests for Verification of an Estimate of Tolerance Relation for Binary Comparisons -- 4 Estimation Problem, Form of Estimators and Their Properties for Multivalent Comparisons -- 4.1 Estimation Problem for Multivalent Comparisons -- 4.2 The Form of Estimator and Its Properties -- 5 Tests for Verification of an Estimate of Tolerance Relation for Multivalent Comparisons -- 6 Summary and Conclusions -- References -- Applications in Healthcare, Medicine, and Sports -- Opportunity for Obtaining an Intuitionistic Fuzzy Estimation for Health-Related Quality of Life Data -- 1 Introduction -- 2 Multi Layer Perceptron -- 3 Discussion -- 4 Conclusion -- References -- InterCriteria Analysis of the Blood Group Distribution of Patients of Saint Anna Hospital in 2015-2019 -- 1 Introduction -- 2 Input Data -- 3 Application of the InterCriteria Analysis - Results and Discussion -- 4 Conclusion -- References -- Application of the InterCriteria Analysis Method to a Data of Malignant Melanoma Disease for the Burgas Region for 2014-2018 -- 1 Introduction -- 2 An Application of the ICA -- 2.1 Applying ICA Approach for International Statistical Classification of Diseases and Health Problems Group for Malignant Melanoma of Skin -- 2.2 Applying ICA Approach for Marital Status and Gender Data -- 3 Discussions -- 4 Conclusion -- References -- A Generalized Net Model of the Abdominal Aorta and Its Branches as a Part of the Vascular System -- 1 Introduction -- 2 A Generalized Net Model of the Abdominal Aorta and Its Branches as a Part of the Vascular System -- 3 Conclusion -- References -- A Generalized Net Model of the Human Body Excretory System -- 1 Introduction -- 2 The Generalized Net Model -- 3 Conclusion -- References -- Clustering of InterCriteria Analysis Data Using a Malignant Neoplasms of the Digestive Organs Data -- 1 Introduction -- 2 InterCriteria Analysis.
3 Self Organizing Map Neural Networks -- 4 Testing with Data for Malignant Neoplasms of the Digestive Organs Data -- 5 Conclusion -- References -- Fuzzy-Based Algorithm for QRS Detection -- 1 Introduction -- 2 Overview of Algorithm -- 2.1 The Preprocessing Stage -- 2.2 Estimation of the Amplitude Threshold with Fuzzy c-Median Clustering Method -- 3 Numerical Experiment and Results -- 3.1 Data -- 3.2 Results -- 4 Conclusion -- References -- Influence of the Indoor Hockey "Push & -- Flick" Methodology on the Ball Speed During the Penalty Corner Shooting -- 1 Introduction -- 2 Methodology -- 3 InterCriteria Analysis Background -- 4 Results and Discussion from the Study on the Speed of the Ball When Executing a Penalty Corner Using Flick -- 4.1 Variation Analysis of the Speed of the Ball When Executing a Penalty Corner in Goal-Scoring Areas -- 4.2 InterCriteria Analysis of the Speed of the Ball When Executing a Penalty Corner in Goal-Scoring Areas -- 5 Conclusion -- References -- InterCriteria Analysis of Data Obtained from University Students Practicing Sports Activities -- 1 Introduction -- 2 Presentation of the Input Data -- 3 Application of the InterCriteria Analysis -- 4 Conclusions -- References -- Applications in Industry, Business and Critical Infrastructure -- Forest Fire Analysis Based on InterCriteria Analysis -- 1 Introduction -- 2 Forest Fires Data -- 3 Methods Theoretical Background -- 3.1 Methodology of Lubenov -- 4 InterCriteria Analysis -- 5 Results and Discussion -- 6 Conclusion -- References -- Generalized Net Model of Overall Telecommunication System with Queuing -- 1 Introduction -- 2 Classical Conceptual Model of Overall Telecommunication System -- 2.1 Base Virtual Devices Representation and Their Parameters -- 2.2 Types and Names of the Base Virtual Devices -- 2.3 Comprise Virtual Devices.
3 Generalized Net Model of Overall Telecommunication System with Queuing -- 3.1 Generalized Net Model of the Dialing Stage -- 3.2 Generalized Net Model of the Switching Stage -- 3.3 Generalized Net Model of the Ringing Stage -- 3.4 Generalized Net Model of the Communication Stage -- 4 Analytical Modeling of the Overall Telecommunication System Using the GN Model -- 4.1 Static and Dynamic Parameters of the Model -- 4.2 Main Assumptions -- 4.3 Equation for the Traffic Intensity of the Called Terminals -- 5 Conclusions -- References -- Generalized Net Model of Information Security Activities in the Automated Information Systems -- 1 Introduction -- 2 Generalized Net Model of Information Security Activities in Automated Information Systems -- 3 Conclusion -- References -- Use of OFN in the Short-Term Prediction of Exchange Rates -- 1 Introduction -- 2 Exchange Rates and Currency Markets -- 3 Fuzzy Observation of the Exchange Rate of Euro in Relation to USD -- 4 Formalizing the Description of Fuzzy Observation -- 5 Conclusion -- References -- Ordered Fuzzy Numbers for IoT Smart Home Solution -- 1 Introduction -- 2 The Idea of IoT and Intelligent - Smart Homes -- 3 Ordered Fuzzy Numbers for Smart Home Heating and Cooling System -- 4 The Real Test of Proposed Method -- 5 Conclusion -- References -- When Two-Constraint Binary Knapsack Problem is Equivalent to Classical Knapsack Problem? -- 1 Introduction -- 2 Definitions -- 3 Lagrange and Dual Estimations -- 4 Probabilistic Analysis -- 5 Concluding Remarks -- References -- Author Index.
Record Nr. UNINA-9910488700503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable neural networks based on fuzzy logic and multi-criteria decision tools / / József Dombi, Orsolya Csiszár
Explainable neural networks based on fuzzy logic and multi-criteria decision tools / / József Dombi, Orsolya Csiszár
Autore Dombi József
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (186 pages)
Disciplina 006.32
Collana Studies in fuzziness and soft computing
Soggetto topico Fuzzy logic
Neural networks (Computer science)
Machine learning
Artificial intelligence
Xarxes neuronals (Informàtica)
Lògica difusa
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 3-030-72280-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Introduction-Aggregation and Intelligent Decision -- Contents -- List of Figures -- List of Tables -- Elements of Nilpotent Fuzzy Logic -- 1 Connectives: Conjunctions, Disjunctions and Negations -- 1.1 Introduction -- 1.2 Preliminaries -- 1.2.1 Negations -- 1.2.2 Triangular Norms and Conorms -- 1.3 Characterization of Strict Negation Operators -- 1.4 Nilpotent Connective Systems -- 1.4.1 Structural Properties of Connective Systems -- 1.4.2 Consistent Connective Systems -- 1.5 Summary -- References -- 2 Implications -- 2.1 Introduction -- 2.2 Preliminaries -- 2.3 R-Implications in Bounded Systems -- 2.4 S-Implications in Bounded Systems -- 2.4.1 Properties of iSn, iSd and iSc -- 2.4.2 S-Implications and the Ordering Property -- 2.5 A Comparison of Implications in Bounded Systems -- 2.6 Min and Max Operators in Nilpotent Connective Systems -- 2.7 Summary -- References -- 3 Equivalences -- 3.1 Introduction -- 3.2 Preliminaries -- 3.3 Equivalences in Bounded Systems -- 3.3.1 Properties of ec(x,y) and ed(x,y) -- 3.4 Dual Equivalences -- 3.4.1 Properties of bared and barec -- 3.5 Arithmetic Mean Operators in Bounded Systems -- 3.6 Aggregated Equivalences -- 3.6.1 Properties of the Aggregated Equivalence Operator -- 3.7 Applications -- 3.8 Summary -- References -- 4 Modifiers and Membership Functions in Fuzzy Sets -- 4.1 Introduction -- 4.2 Unary Operators in Nilpotent Logical Systems -- 4.2.1 Possibility and Necessity as Unary Operators Derived from Multivariable Operators -- 4.2.2 Drastic Unary Operators -- 4.2.3 Composition Rules -- 4.2.4 Multivariable Operators Derived from Unary Operators -- 4.2.5 A General Framework: The α, β, γ- Model -- 4.3 Unary Operators Induced by Negation Operators -- 4.4 Membership Functions -- 4.5 Non-membership Functions -- 4.6 Summary -- References -- Decision Operators.
5 Aggregative Operators -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Shifting Transformations on the Generator Functions - A General Parametric Formula -- 5.4 The Weighted General Operator -- 5.5 Properties of the General and the Weighted General Operator -- 5.5.1 The De Morgan Property -- 5.5.2 Bisymmetry -- 5.6 The Two-Variable General and Weighted Aggregative Operator -- 5.7 Summary -- References -- 6 Preference Operators -- 6.1 Introduction -- 6.2 Operators of Nilpotent Systems - A General Framework -- 6.2.1 Normalization of the Generator Functions -- 6.2.2 The General Parametric Operator -- 6.2.3 The Unary Operators: Negation, Modifiers and Hedges -- 6.3 Preference Modeling -- 6.4 Properties of the Preference Operator -- 6.4.1 Basic Properties -- 6.4.2 Ordering Properties -- 6.4.3 Preference and Negation -- 6.4.4 Preference, Conjunction and Disjunction -- 6.4.5 Preference and Aggregation -- 6.4.6 Additive Transitivity -- 6.4.7 Bisymmetry and the Common Base Property -- 6.4.8 Preference and Unary Operators -- 6.5 Summary -- References -- Learning and Neural Networks -- 7 Squashing Functions -- 7.1 Introduction -- 7.2 Łukasiewicz Operators -- 7.3 Approximation of the Cutting Function -- 7.3.1 The Sigmoid Function -- 7.3.2 The Interval [a,b] Squashing Function -- 7.3.3 The Error of the Approximation -- 7.4 Approximation of Piecewise Linear Membership Functions -- 7.5 Summary -- References -- 8 Learning Rules -- 8.1 Introduction -- 8.2 Problem Definition and Solution Outline -- 8.3 Preliminaries -- 8.4 The Structure and Representation of the Rules -- 8.5 The Optimization Process -- 8.5.1 Rule Optimization by GA -- 8.5.2 A Gradient-Based Local Optimization of Memberships -- 8.6 Applications -- 8.7 Summary -- References -- 9 Interpretable Neural Networks Based on Continuous-Valued Logic and Multi-criteria Decision Operators -- 9.1 Introduction.
9.2 Related Work -- 9.3 Nilpotent Logical Systems and Multicriteria Decision Tools -- 9.4 Nilpotent Logic-Based Interpretation of Neural Networks -- 9.5 Playground Examples -- 9.5.1 XOR -- 9.5.2 Preference -- 9.6 Summary -- References -- 10 Conclusions.
Record Nr. UNINA-9910482999203321
Dombi József  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fuzzy logic hybrid extensions of neural and optimization algorithms : theory and applications / / editors, Oscar Castillo, Patricia Melin
Fuzzy logic hybrid extensions of neural and optimization algorithms : theory and applications / / editors, Oscar Castillo, Patricia Melin
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (ix, 383 pages) : illustrations
Disciplina 511.3
Collana Studies in computational intelligence
Soggetto topico Fuzzy logic
Neural networks (Computer science)
Soft computing
Lògica difusa
Xarxes neuronals (Informàtica)
Optimització matemàtica
Informàtica tova
Algorismes
Soggetto genere / forma Llibres electrònics
ISBN 3-030-68776-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Estimation of the Number of Filters in the Convolution Layers of a Convolutional Neural Network Using a Fuzzy Logic System -- 1 Introduction -- 2 Literature Review -- 2.1 Convolutional Neural Networks -- 2.2 GSA -- 2.3 FGSA -- 3 Proposed Method -- 4 Results and Discussion -- 5 Conclusions -- References -- Optimization of Membership Function Parameters for Fuzzy Controllers in Cruise Control Problem Using the Multi-verse Optimizer -- 1 Introduction -- 2 Fuzzy Systems -- 2.1 Mamdani Model -- 2.2 Sugeno Model -- 3 Control Systems -- 4 Metaheuristics and Multi-verse Optimizer -- 4.1 Multi-verse Optimizer -- 4.2 Applications of MVO -- 5 Test and Results -- 5.1 Benchmark Function Test and Results -- 5.2 Applications Test and Results -- 6 Conclusions -- References -- Performance Analysis of a Distributed Steady-State Genetic Algorithm Using Low-Power Computers -- 1 Introduction -- 2 Distributed Steady-State Genetic Algorithm -- 2.1 Application of Distributed Steady-State Genetic Algorithm in the n-Queens Problem -- 2.2 Application of Distributed Steady-State Genetic Algorithm in the Travelling Salesman Problem -- 3 Master-Slave Low Power Architecture -- 3.1 Rationale on Master-Slave Architecture Starting Procedure -- 3.2 Function Evaluation Task on Slave-Devices -- 3.3 Fail-Safe Algorithm on Master-Device -- 4 Computational Results -- 4.1 Experimental Setup -- 4.2 n-Queens Problem Experimental Arrangement Results -- 4.3 Travelling Salesman Problem Results -- 5 Conclusions and Future Work -- References -- Ensemble Recurrent Neural Networks for Complex Time Series Prediction with Integration Methods -- 1 Introduction -- 2 Problem Statement and Proposed Method -- 2.1 Analyze the Time Series -- 2.2 Creation of the Recurrent Neural Network -- 2.3 Integration by Average -- 2.4 Integration by Weighted Average.
2.5 Integration by Gating Network -- 2.6 Type-1 and Type-2 Fuzzy System Integration -- 2.7 Generalized Type-2 Fuzzy System -- 3 Simulation Results -- 4 Conclusions -- References -- Genetic Optimization of Ensemble Neural Network Architectures for Prediction of COVID-19 Confirmed and Death Cases -- 1 Introduction -- 2 Basic Concepts -- 2.1 Artificial Neural Networks -- 2.2 Nonlinear Autoregressive Neural Network -- 2.3 Fuzzy Logic -- 2.4 Genetic Algorithms -- 3 Proposed Method -- 4 Results of the Experiment -- 4.1 Genetic Algorithms -- 5 Conclusions -- References -- Optimization of Modular Neural Networks for the Diagnosis of Cardiovascular Risk -- 1 Introduction -- 2 Literature Review -- 2.1 Flower Pollination Algorithm -- 2.2 Bird Swarm Algorithm -- 2.3 Blood Pressure and Hypertension -- 2.4 Cardiovascular Disease and Heart Age -- 2.5 Framingham Heart Study -- 3 Proposed Method -- 4 Results -- 5 Conclusions and Future Work -- References -- A Review on the Cuckoo Search Algorithm -- 1 Introduction -- 2 An Analogy with Nature -- 2.1 Cuckoo Search Algorithm -- 2.2 Algorithm Rules -- 2.3 Levy Flights -- 2.4 Mathematical Formulas -- 2.5 Flowchart CS -- 3 Implementation of Levy Flights in Other Algorithms -- 4 Variants of the Cuckoo Search Algorithm -- 5 Applications -- 6 Conclusions -- References -- An Improved Convolutional Neural Network Based on a Parameter Modification of the Convolution Layer -- 1 Introduction -- 2 Background and Basic Concepts -- 2.1 Convolutional Neural Network Concepts -- 2.2 Edge Detectors -- 2.3 Sobel Operator -- 2.4 Prewitt Operator -- 2.5 Laplacian Operator -- 3 Proposed Approach -- 3.1 Proposed Architecture -- 3.2 Convolution Kernel Initialization -- 4 Experiments -- 4.1 Case Study MNIST Handwritten Digits -- 4.2 Case Study MNIST American Sign Language -- 4.3 Case Study Mexican Sign Language Database -- 5 Conclusions.
References -- Parameter Optimization of a Convolutional Neural Network Using Particle Swarm Optimization -- 1 Introduction -- 2 Convolutional Neural Network -- 2.1 Input Layer -- 2.2 Convolution Layer -- 2.3 Non-linearity Layer -- 2.4 Pooling Layer -- 2.5 Classifier Layer -- 3 Particle Swarm Optimization -- 3.1 Global Best PSO -- 3.2 Local Best PSO -- 4 Proposed Method -- 4.1 Parameter Optimization of the CNN -- 4.2 CNN-PSO Optimization Process -- 5 Experiments and Results -- 5.1 Exploratory Experiment -- 5.2 American Sign Language Alphabet (ASL Alphabet) Experiment -- 5.3 American Sign Language MNIST Experiment -- 5.4 Analysis and Comparison of Results -- 6 Conclusion and Future Work -- References -- One-Dimensional Bin Packing Problem: An Experimental Study of Instances Difficulty and Algorithms Performance -- 1 Introduction -- 2 The Bin Packing Problem -- 2.1 Instances -- 2.2 Index Description -- 2.3 Performance Measures -- 3 Algorithms -- 3.1 First Fit Decreasing (FFD) -- 3.2 Best Fit Decreasing (BFD) -- 3.3 Minimum Bin Slack (MBS) -- 3.4 GGA-CGT -- 4 Results -- 5 Experimental Analysis -- 5.1 Class BPP.25 -- 5.2 Class BPP.5 -- 5.3 Class BPP.75 -- 5.4 Class BPP1 -- 6 Conclusions and Future Work -- References -- Looking for Emotions in Evolutionary Art -- 1 Introduction -- 2 In Search of Lost Emotions -- 2.1 Humans in the EA Loop -- 3 Methodology: Analysis of Emotions in the Era of Evolutionary Art -- 3.1 The Line -- 3.2 Simplifying the Problem -- 3.3 Evospace-Interactive Module -- 4 Results -- 4.1 Analyzing Formal Elements -- 4.2 Are Emotions Properly Understood? -- 4.3 Audience Analysis -- 4.4 International Art Competitions -- 5 Conclusion -- References -- Review of Hybrid Combinations of Metaheuristics for Problem Solving Optimization -- 1 Introduction -- 2 Review of Hybrid or Combined Metaheuristics -- 3 Discussion -- 4 Conclusions.
References -- GPU Accelerated Membrane Evolutionary Artificial Potential Field for Mobile Robot Path Planning -- 1 Introduction -- 2 Fundamentals -- 2.1 Membrane Computing -- 2.2 Evolutionary Computation -- 2.3 Artificial Potential Field Method -- 3 GPU Accelerated MemEAPF -- 4 Results -- 4.1 Path Planning Results -- 4.2 Performance Results -- 5 Conclusions -- References -- Optimization of the Internet Shopping Problem with Shipping Costs -- 1 Introduction -- 1.1 Definition of the Problem -- 2 The General Structure of the Memetic Algorithm -- 2.1 Selection by Tournament -- 2.2 Crossover Operator -- 2.3 Mutation Operator -- 2.4 Local Search -- 2.5 Memetic Algorithm (MAIShOP) -- 3 Computational Experiments -- 4 Conclusions -- References -- Multiobjective Algorithms Performance When Solving CEC09 Test Instances -- 1 Introduction -- 2 Multiobjective Optimization -- 3 CEC09 Test Functions -- 4 Multiobjective Optimization Algorithms -- 5 Performance Metrics of Multiobjective Optimization -- 6 Computational Experiments -- 7 Conclusion and Future Work -- References -- Analysis of the Efficient Frontier of the Portfolio Selection Problem Instance of the Mexican Capital Market -- 1 Introduction -- 2 Multiobjective Algorithms in Comparison -- 3 CellDE -- 4 GDE3 -- 5 IBEA -- 6 MOCell -- 7 NSGA-II -- 8 NSGA-III -- 9 OMOPSO -- 10 PAES -- 11 SPEA2 -- 12 Computational Experiments -- 13 Conclusions -- References -- Multi-objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters -- 1 Introduction -- 2 Elements of Fuzzy Theory -- 2.1 Fuzzy Sets -- 2.2 Generalized Fuzzy Numbers -- 2.3 Addition Operator -- 2.4 Graded Mean Integration (GMI) -- 2.5 Order Relation in the Set of the Trapezoidal Fuzzy Numbers -- 2.6 Pareto Dominance -- 3 Multi-objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters -- 4 Proposal Algorithm T-NSGA-II.
4.1 Representation of the Solutions -- 4.2 Evaluating the Solutions -- 4.3 One-Point Crossover Operator -- 4.4 Uniform Mutation Operator -- 4.5 Initial Population -- 4.6 Population Sorting -- 4.7 No-Dominated Sorting -- 4.8 Calculating the Crowding Distance (Deb et al. 2000) -- 4.9 Calculating the Spatial Spread Deviation (SSD) (Santiago et al. 2019) -- 4.10 Pseudocode of the T-NSGA-II Algorithm -- 5 Proposed Strategy to Assess the Performance of Multi-objective Algorithms in the Fuzzy Trapezoidal Numbers Domain -- 6 Computational Experiments -- 7 Conclusions -- References -- A Study on the Use of Hyper-heuristics Based on Meta-Heuristics for Dynamic Optimization -- 1 Introduction -- 2 Background and Definitions -- 2.1 Dynamic Multi-objective Optimization Problem -- 2.2 Dynamic Multi-objective Evolutionary Algorithm -- 2.3 Hyper-heuristic -- 2.4 Indicators to Evaluate DMOEAs Performance Over DMOPs -- 3 Relevant Properties to Consider from DMOPs -- 3.1 Objective Function -- 3.2 Decision Variables -- 3.3 Constraints -- 4 Known Hyper-heuristic Approaches Towards Solving DOPs -- 5 Proposed Checklist and Design Guide for Dynamic Hyper-heuristics -- 6 Case Studies Using the Proposed Guide and Checklist -- 6.1 Case Study 1 -- 6.2 Case Study 2 -- 7 Conclusions and Future Work -- References -- On the Adequacy of a Takagi-Sugeno-Kang Protocol as an Empirical Identification Tool for Sigmoidal Allometries in Geometrical Space -- 1 Introduction -- 2 Methods -- 2.1 Model of Complex Allometry -- 2.2 TSK Fuzzy Model -- 2.3 Data -- 2.4 Reproducibility Assessment -- 2.5 TSK Identification Procedures -- 2.6 Piecewise-Linear Schemes -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- A New Hybrid Method Based on ACO and PSO with Fuzzy Dynamic Parameter Adaptation for Modular Neural Networks Optimization -- 1 Introduction -- 2 Proposed Method.
2.1 Ant System and ACO Algorithm.
Record Nr. UNINA-9910483557103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui