top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Autore Cottrell J. Austin
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Descrizione fisica 1 online resource (355 p.)
Disciplina 620.001
620.00151825
Altri autori (Persone) HughesThomas J. R
BazilevsYuri
Soggetto topico Finite element method - Data processing
Spline theory - Data processing
Isogeometric analysis - Data processing
Computer-aided design
ISBN 1-282-25947-4
9786612259470
0-470-74908-3
0-470-74909-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods
3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly
4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem
5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder
5.7 Wave propagation
Record Nr. UNINA-9910139931603321
Cottrell J. Austin  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Autore Cottrell J. Austin
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Descrizione fisica 1 online resource (355 p.)
Disciplina 620.001
620.00151825
Altri autori (Persone) HughesThomas J. R
BazilevsYuri
Soggetto topico Finite element method - Data processing
Spline theory - Data processing
Isogeometric analysis - Data processing
Computer-aided design
ISBN 1-282-25947-4
9786612259470
0-470-74908-3
0-470-74909-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods
3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly
4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem
5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder
5.7 Wave propagation
Record Nr. UNINA-9910830838703321
Cottrell J. Austin  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Isogeometric analysis : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Isogeometric analysis : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Autore Cottrell J. Austin
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Descrizione fisica 1 online resource (355 p.)
Disciplina 620.001
620.00151825
Altri autori (Persone) HughesThomas J. R
BazilevsYuri
Soggetto topico Finite element method - Data processing
Spline theory - Data processing
Isogeometric analysis - Data processing
Computer-aided design
ISBN 1-282-25947-4
9786612259470
0-470-74908-3
0-470-74909-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods
3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly
4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem
5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder
5.7 Wave propagation
Record Nr. UNINA-9910877758303321
Cottrell J. Austin  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Isogeometric analysis : toward integration of CAD and FEA / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Isogeometric analysis : toward integration of CAD and FEA / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs
Autore Cottrell, J. Austin
Pubbl/distr/stampa Chichester, West Sussex, U.K. : Wiley, 2009
Descrizione fisica xvi, 335 p. : ill. (chiefly col.) ; 26 cm
Disciplina 620.001
Altri autori (Persone) Hughes, Thomas J. R.
Bazilevs, Yuri
Soggetto topico Finite element method - Data processing
Spline theory - Data processing
Isogeometric analysis - Data processing
Computer-aided design
ISBN 9780470748732
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002013889707536
Cottrell, J. Austin  
Chichester, West Sussex, U.K. : Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Isogeometric analysis / Jesse Russell, Ronald Cohn
Isogeometric analysis / Jesse Russell, Ronald Cohn
Autore Russell, Jesse
Pubbl/distr/stampa Edinburgh : Lennex Corp., 2012
Descrizione fisica 74 p. : ill. ; 28 cm
Disciplina 620.001
Altri autori (Persone) Cohn, Ronaldauthor
Soggetto topico Finite element method - Data processing
Isogeometric analysis - Data processing
ISBN 9785511763019
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001805489707536
Russell, Jesse  
Edinburgh : Lennex Corp., 2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui