top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dewatered spent ion exchange resin susceptibility to exothermic chemical reaction
Dewatered spent ion exchange resin susceptibility to exothermic chemical reaction
Pubbl/distr/stampa Washington, D.C. : , : United States Nuclear Regulatory Commission, Office of Inspection and Enforcement, , 1983
Descrizione fisica 1 online resource
Collana NRC information notice
Soggetto topico Ion exchange resins
Exchange reactions
Thermodynamics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910713960803321
Washington, D.C. : , : United States Nuclear Regulatory Commission, Office of Inspection and Enforcement, , 1983
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evaluation of an anion exchange resin for sampling ambient level phenolic compounds Project summary / / Marcia Nishioka and Hazel Burkholder
Evaluation of an anion exchange resin for sampling ambient level phenolic compounds Project summary / / Marcia Nishioka and Hazel Burkholder
Autore Nishioka Marcia G.
Pubbl/distr/stampa Research Triangle Park, NC : , : United States Environmental Protection Agency, Research and Development, Atmospheric Research and Exposure Assessment Laboratory, , 1990
Descrizione fisica 1 online resource (5 pages) : illustrations
Soggetto topico Phenols - Sampling
Ion exchange resins
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Project summary
Record Nr. UNINA-9910715151603321
Nishioka Marcia G.  
Research Triangle Park, NC : , : United States Environmental Protection Agency, Research and Development, Atmospheric Research and Exposure Assessment Laboratory, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
From the chemistry lab to licensing / / Joseph M. Savino, Kenneth W. Street, Warren H. Philipp
From the chemistry lab to licensing / / Joseph M. Savino, Kenneth W. Street, Warren H. Philipp
Autore Savino J. M.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , July 1998
Descrizione fisica 1 online resource (1 unnumbered page, 6 pages)
Collana NASA/TM
Soggetto topico Technology transfer
Ion charge
Ion exchange resins
Licensing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910705881303321
Savino J. M.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , July 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ion Exchange Membranes : Design, Preparation, and Applications
Ion Exchange Membranes : Design, Preparation, and Applications
Autore Xu Tongwen
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (435 pages)
Disciplina 541.372
Altri autori (Persone) WangYaoming
Soggetto topico Ion exchange resins
Membranes (Technology)
ISBN 9783527841424
3527841423
9783527841448
352784144X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Overview of Ion Exchange Membranes -- 1.1 Definition and Classifications -- 1.2 Profile of IEMs -- 1.3 Preparation of IEMs -- 1.4 Applications -- 1.5 Potentials -- References -- Chapter 2 Fundamentals and Characterizations -- 2.1 Donnan Equilibrium -- 2.2 Membrane Potential -- 2.3 Transference Number -- 2.4 Diffusion Coefficient and Ion Permeability -- 2.5 Ion Flux and Permselectivity -- 2.6 Area Resistance -- 2.7 Concentration Polarization -- 2.8 Limiting Current Density and Current-Voltage Curves -- 2.9 Water Transport -- 2.10 Membrane Scaling and Fouling -- 2.11 Zeta Potential -- 2.12 Other Conventional Characterization -- 2.12.1 Conductivity -- 2.12.2 Ion Exchange Capacity -- 2.12.3 Water Uptake and Swelling Ratio -- 2.12.4 Mechanical Strength -- References -- Chapter 3 Side‐chain Engineering for Ion Exchange Membrane Preparation -- 3.1 Principles of Side‐chain Engineering -- 3.1.1 Inspiration of Nafion -- 3.1.2 Microphase Separation of Grafted Polymers -- 3.2 Construction of Side‐chain Architecture -- 3.2.1 Design of Side‐chain CEMs -- 3.2.1.1 Design of Side‐chain CEMs with Similar Nafion Structures -- 3.2.1.2 Design of Side‐chain CEMs with Grafted Structures -- 3.2.2 Design of Side‐chain AEMs -- 3.2.2.1 Design of Side‐chain AEMs with Similar Nafion Structures -- 3.2.2.2 Design of Side‐chain AEMs with Grafted Structures -- 3.2.2.3 Design of Functional Groups for Side‐chain AEMs -- 3.3 Construction of the Cross‐linking Side Chain -- 3.4 Construction of Hyperbranched Networks -- 3.5 Construction of Dynamic Transfer Regions -- 3.6 Construction of Cation-Dipole Interactions -- References -- Chapter 4 Polyacylation for Ion Exchange Membrane Preparation -- 4.1 Principle of Polyacylation -- 4.2 Types of Acylation Reactions -- 4.2.1 Acylation of Alcohols.
4.2.2 Acylation of Amines -- 4.2.3 Acylation of Enols -- 4.2.4 Acylation of Carboxylic Acids -- 4.2.5 Acylation of Ketones -- 4.2.6 Acylation of Amides -- 4.2.7 Acylation of Sulfonamides -- 4.2.8 Polyacylation of Polymers -- 4.2.9 Advantages and Limitations of Polyacylation as a Synthetic Approach -- 4.2.10 Polyacylation and Polymers -- 4.3 Perylene‐based Polyimides -- 4.3.1 Traditional Route -- 4.3.2 Polyacylation Route -- 4.3.3 Synthesis of Perylene‐based Polyimide‐based Ion Exchange Membranes -- 4.3.4 Perylene and Polyimide‐based CEMs -- 4.3.5 Perylene and Polyimide‐based AEMs -- 4.4 Polyacylation of SPEK‐based IEMs -- 4.4.1 Polyacylation of SPEK‐based CEMs -- 4.4.2 Polyacylation of SPEK‐based AEMs -- 4.5 Polyacylation/Polyacylated Crown Ether IEMs -- 4.5.1 Acylation of Crown Ether -- 4.5.2 Poly‐Crown Ether‐based AEM -- 4.5.3 Poly‐crown Ether‐based Noncharged Selective Membrane (PCENS‐M) -- 4.6 Conclusion -- 4.6.1 Challenges/Opportunities for Further Development -- 4.6.2 Outlook for the Future of Polyacylation in Membrane Research -- References -- Chapter 5 Superacid-Catalyst Polymerization for IEMs Preparation -- 5.1 Definition and Types of Superacid -- 5.2 Principle of Superacid Catalyst -- 5.3 Superacid‐catalyzed Reaction for Polymer Synthesis -- 5.4 Superacid‐catalyst Polymerization for IEM Preparation -- 5.5 Others -- References -- Chapter 6 Microporous Polymers for IEM Preparation -- 6.1 Ion Transport Behavior in Nanospace‐confined Membranes -- 6.2 Principle of Microporous Polymers -- 6.3 IEMs Derived from Microporous Polymers -- 6.3.1 Positively Charged Microporous Polymers -- 6.3.2 Negatively Charged Microporous Polymers -- 6.3.2.1 Hydrolysis of Dibenzodioxin‐based Microporous Polymers -- 6.3.2.2 Amidoxime of Dibenzodioxin‐based PIMs -- 6.3.2.3 Post‐sulfonation of PIMs or Bottom‐up Approach -- 6.4 Conclusion and Outlook -- References.
Chapter 7 In Situ Polymerization for IEM Preparation -- 7.1 Conventional Methods for IEM Preparation -- 7.2 Semi‐interpenetrating Polymer Network -- 7.3 Pore Filling -- 7.4 Solvent‐free Strategy -- 7.5 In Situ Polymerization -- References -- Chapter 8 Special IEMs Preparation -- 8.1 Metal-Organic Framework Membranes -- 8.1.1 Introduction -- 8.1.2 Structural Properties of MOFs -- 8.1.2.1 Structural Diversity -- 8.1.2.2 Structural Tunability -- 8.1.2.3 High Stability -- 8.1.3 Preparation of MOF Membranes -- 8.1.3.1 UiO‐66‐NH2 Membrane -- 8.1.3.2 UiO‐66‐SO3H Membrane -- 8.1.3.3 UiO‐66(Zr/Ti)‐NH2/Polyamide Mixed Matrix Membrane -- 8.1.3.4 PolyMOF Membrane -- 8.2 Porous Organic Cage Membranes -- 8.2.1 Introduction -- 8.2.2 Structural Properties of POCs -- 8.2.3 Preparation of POC Membranes -- 8.2.3.1 POC Membranes of Versatile Channels -- 8.2.3.2 High Ion‐Permselective CC3 Membrane -- 8.3 Covalent Organic Framework Membranes -- 8.3.1 Introduction -- 8.3.2 Design Strategies of the COF Structure -- 8.3.2.1 Pore Structure Design -- 8.3.2.2 Pore Surface Engineering -- 8.3.3 Preparation of COF Membranes -- 8.3.3.1 COF Membrane with Sub‐2‐nm Channels -- 8.3.3.2 Cationic COF Membrane -- 8.3.3.3 Self‐Standing COF Membrane -- 8.4 Electro‐Nanofiltration Membranes -- 8.4.1 Introduction -- 8.4.2 The Preparation of ENMs -- 8.4.3 The Performance of ENMs -- 8.5 Conclusion and Perspective -- References -- Chapter 9 Applications -- 9.1 Diffusion Dialysis (DD) -- 9.1.1 The Basic Theory of Diffusion Dialysis -- 9.1.1.1 High‐performance Diffusion Dialysis Membranes -- 9.1.2 Diffusion Dialysis Components -- 9.1.3 Diffusion Dialysis Application Field -- 9.1.3.1 Recovery of Waste Acid -- 9.1.3.2 Alkali Recovery -- 9.2 Reverse Electrodialysis (RED) -- 9.2.1 Basic Theory of RED -- 9.2.2 The Main Components of RED -- 9.2.2.1 Ion Exchange Membrane -- 9.2.2.2 Spacers.
9.2.2.3 Electrode System -- 9.3 Donnan Dialysis -- 9.3.1 Basic Theory of Donnan Dialysis -- 9.3.1.1 The Parameters Affecting Donnan Dialysis -- 9.4 Electrodialysis (ED) -- 9.5 Application of ED -- 9.5.1 Desalination -- 9.5.2 Concentration -- 9.5.3 The Influencing Parameters on ED Concentration -- 9.5.3.1 Approaches to Improve the Concentration on ED -- 9.5.4 Resource Conversion -- 9.5.5 CO2 Capture -- 9.6 Electrodialysis with Bipolar Membranes (BMED) -- 9.6.1 The Basic Theory of Bipolar Membranes -- 9.6.2 Application of the BMED Process -- 9.6.2.1 The Production of Alkali -- 9.6.2.2 The Production of Acid -- 9.6.2.3 Production of CO2 Conversion -- 9.6.3 The Limitations of BMED -- 9.7 Electrodialysis Metathesis (EDM) -- 9.7.1 Application of the EDM Process -- 9.7.1.1 The Production of Ionic Liquid -- 9.7.1.2 High‐Salinity Wastewater Conversion -- 9.7.1.3 The Production of Potassium Fertilizers -- 9.8 Ion‐Distillation Technology -- 9.9 Fuel Cells -- 9.10 Water Electrolysis -- 9.11 Industrial Applications -- 9.11.1 Acid Recovery Using Diffusion Dialysis -- 9.11.2 Resource Recovery Using Electrodialysis -- 9.11.3 Clean Production Using Bipolar Membrane Electrodialysis -- References -- Index -- EULA.
Record Nr. UNINA-9911019772803321
Xu Tongwen  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lead removal from synthetic leachate matrices by a novel ion-exchange material / / Kenneth W. Street, Jr., Edward S. Hovanitz, Sulan Chi
Lead removal from synthetic leachate matrices by a novel ion-exchange material / / Kenneth W. Street, Jr., Edward S. Hovanitz, Sulan Chi
Autore Street Kenneth W.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , July 2002
Descrizione fisica 1 online resource (14 pages) : illustrations
Collana NASA/TM
Soggetto topico Acrylic resins
Aqueous solutions
Ion exchange resins
Lead (metal)
Metal ions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910708615103321
Street Kenneth W.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , July 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui