Geophysical inverse theory and regularization problems / / Michael S. Zhdanov
| Geophysical inverse theory and regularization problems / / Michael S. Zhdanov |
| Autore | Zhdanov Mikhail Semenovich |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Amsterdam, : Elsevier, 2002 |
| Descrizione fisica | 1 online resource (635 p.) |
| Disciplina |
550
550.1515 622.150151 |
| Collana | Methods in geochemistry and geophysics |
| Soggetto topico |
Inversion (Geophysics)
Geophysics - Measurement Functional analysis Mathematical optimization |
| ISBN |
1-281-04863-1
9786611048631 0-08-053250-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Contents; Preface; Part I: Introduction to Inversion Theory; Chapter 1. Forward and inverse problems in geophysics; 1.1 Formulation of forward and inverse problems for different geophysical fields; 1.2 Existence and uniqueness of the inverse problem solutions; 1.3 Instability of the inverse problem solution; Chapter 2. ILL-Posed problems and the methods of their solution; 2.1 Sensitivity and resolution of geophysical methods; 2.2 Formulation of well-posed and ill-posed problems; 2.3 Foundations of regularization methods of inverse problem solution; 2.4 Family of stabilizing functionals
2.5 Definition of the regularization parameterPart II: Methods of the Solution of Inverse Problems; Chapter 3. Linear discrete inverse problems; 3.1 Linear least-squares inversion; 3.2 Solution of the purely underdetermined problem; 3.3 Weighted least-squares method; 3.4 Applying the principles of probability theory to a linear inverse problem; 3.5 Regularization methods; 3.6 The Backus-Gilbert Method; Chapter 4. Iterative solutions of the linear inverse problem; 4.1 Linear operator equations and their solution by iterative methods; 4.2 A generalized minimal residual method 4.3 The regularization method in a linear inverse problem solutionChapter 5. Nonlinear inversion technique; 5.1 Gradient-type methods; 5.2 Regularized gradient-type methods in the solution of nonlinear inverse problems; 5.3 Regularized solution of a nonlinear discrete inverse problem; 5.4 Conjugate gradient re-weighted optimization; Part III: Geopotential Field Inversion; Chapter 6. Integral representations in forward modeling of gravity and magnetic fields; 6.1 Basic equations for gravity and magnetic fields 6.2 Integral representations of potential fields based on the theory of functions of a complex variableChapter 7. Integral representations in inversion of gravity and magnetic data; 7.1 Gradient methods of gravity inversion; 7.2 Gravity field migration; 7.3 Gradient methods of magnetic anomaly inversion; 7.4 Numerical methods in forward and inverse modeling; Part IV: Electromagnetic Inversion; Chapter 8. Foundations of electromagnetic theory; 8.1 Electromagnetic field equations; 8.2 Electromagnetic energy flow; 8.3 Uniqueness of the solution of electromagnetic field equations 8.4 Electromagnetic Green's tensorsChapter 9. Integral representations in electromagnetic forward modeling; 9.1 Integral equation method; 9.2 Family of linear and nonlinear integral approximations of the electromagnetic field; 9.3 Linear and non-linear approximations of higher orders; 9.4 Integral representations in numerical dressing; Chapter 10. Integral representations in electromagnetic inversion; 10.1 Linear inversion methods; 10.2 Nonlinear inversion; 10.3 Quasi-linear inversion; 10.4 Quasi-analytical inversion; 10.5 Magnetotelluric (MT) data inversion Chapter 11. Electromagnetic migration imaging |
| Record Nr. | UNINA-9911004759003321 |
Zhdanov Mikhail Semenovich
|
||
| Amsterdam, : Elsevier, 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
| Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi |
| Autore | Ulrych Tadeusz J |
| Pubbl/distr/stampa | Amsterdam ; ; London, : Elsevier, 2005 |
| Descrizione fisica | 1 online resource (437 p.) |
| Disciplina | 550 |
| Altri autori (Persone) | SacchiMauricio D |
| Collana | Handbook of geophysical exploration. Seismic exploration |
| Soggetto topico |
Inversion (Geophysics)
Prospecting - Geophysical methods - Mathematical models |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-64104-5
9786610641048 0-08-046134-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Contents; Some Basic Concepts; Introduction; Probability Distributions, Stationarity & Ensemble Statistics; Essentials of Probability Distributions; Ensembles, Expectations etc; The Ergodic Hypothesis; The Chebychev Inequality; Time Averages and Ergodidty; Properties of Estimators; Bias of an Estimator; An Example; Variance of an Estimator; An Example; Mean Square Error of an Estimator; Orthogonality; Orthogonal Functions and Vectors; Orthogonal Vector Space; Gram-Schmidt Orthogonalization; Remarks; Orthogonality and Correlation; Orthogonality and Eigenvectors; Fourier Analysis
IntroductionOrthogonal Functions; Fourier Series; The Fourier Transform; Properties of the Fourier Transform; The FT of Some Functions; Truncation in Time; Symmetries; Living in a Discrete World; Aliasing and the Poisson Sum Formula; Some Theoretical Details; Limits of Infinite Scries; Remarks; The z Transform; Relationship Between z and Fourier Transforms; Discrete Fourier Transform; Inverse DFT; Zero Padding; The Fast Fourier Transform (FFT); Linearity and Time Invariance; Causal Systems; Discrete Convolution; Convolution and the z Transform; Dcconvolution; Dipole Filters Invertibility of Dipole FiltersProperties of Polynomial Filters; Some Toy Examples for Clarity; Least Squares Inversion of Minimum Phase Dipoles; Inversion of Minimum Phase Sequences; Inversion of Nonminimum Phase Wavelets: Optimum Lag SpikingFilters; Discrete Convolution and Circulant Matrices; Discrete and Circular Convolution; Matrix Notation for Circular Convolution; Diagonalization of the Circulant Matrix; Applications of the Circulant; Convolution; Deconvolution; Efficient Computation of Large Problems; Polynomial and FT Wavelet Inversion; Expectations etc.,; The Covariance Matrix Lagrange MultipliersLinear Time Series Modelling; Introduction; The Wold Decomposition Theorem; The Moving Average. MA, Model; Determining the Coefficients of the MA Model; Computing the Minimum Phase Wavelet via the FFT; The Autoregressive, AR, Model; Autocovariance of the AR Process; Estimating the AR Parameters; The Levinson Recursion; Initialization; The Prediction Error Operator, PEO; Phase Properties of the PEO; Proof of the Minimum Delay Property of the PEO; The Autoregressive Moving Average, ARMA, Model; A Very Special ARMA Process MA, AR and ARMA Models in Seismic Modelling and ProcessingExtended AR Models and Applications; A Little Predictive Deconvolution Theory; The Output of Predictive Deconvolution; Remarks; Summary; A Few Words About Nonlinear Time Series; The Principle of Embedding; Summary; Levinson's Recursion and Reflection Coefficients; Theoretical Summary; Summary and Remarks; Minimum Phase Property of the PEO; PROOF I; Eigenvectors of Doubly Symmetric Matrices; Spectral decomposition; Minimum phase property; PROOF II; Discussion; Information Theory and Relevant Issues; Introduction Entropy in Time Series Analysis |
| Record Nr. | UNINA-9910458822303321 |
Ulrych Tadeusz J
|
||
| Amsterdam ; ; London, : Elsevier, 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi
| Information-based inversion and processing with applications [[electronic resource] /] / Tadeusz J. Ulrych, Mauricio D. Sacchi |
| Autore | Ulrych Tadeusz J |
| Pubbl/distr/stampa | Amsterdam ; ; London, : Elsevier, 2005 |
| Descrizione fisica | 1 online resource (437 p.) |
| Disciplina | 550 |
| Altri autori (Persone) | SacchiMauricio D |
| Collana | Handbook of geophysical exploration. Seismic exploration |
| Soggetto topico |
Inversion (Geophysics)
Prospecting - Geophysical methods - Mathematical models |
| ISBN |
1-280-64104-5
9786610641048 0-08-046134-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Contents; Some Basic Concepts; Introduction; Probability Distributions, Stationarity & Ensemble Statistics; Essentials of Probability Distributions; Ensembles, Expectations etc; The Ergodic Hypothesis; The Chebychev Inequality; Time Averages and Ergodidty; Properties of Estimators; Bias of an Estimator; An Example; Variance of an Estimator; An Example; Mean Square Error of an Estimator; Orthogonality; Orthogonal Functions and Vectors; Orthogonal Vector Space; Gram-Schmidt Orthogonalization; Remarks; Orthogonality and Correlation; Orthogonality and Eigenvectors; Fourier Analysis
IntroductionOrthogonal Functions; Fourier Series; The Fourier Transform; Properties of the Fourier Transform; The FT of Some Functions; Truncation in Time; Symmetries; Living in a Discrete World; Aliasing and the Poisson Sum Formula; Some Theoretical Details; Limits of Infinite Scries; Remarks; The z Transform; Relationship Between z and Fourier Transforms; Discrete Fourier Transform; Inverse DFT; Zero Padding; The Fast Fourier Transform (FFT); Linearity and Time Invariance; Causal Systems; Discrete Convolution; Convolution and the z Transform; Dcconvolution; Dipole Filters Invertibility of Dipole FiltersProperties of Polynomial Filters; Some Toy Examples for Clarity; Least Squares Inversion of Minimum Phase Dipoles; Inversion of Minimum Phase Sequences; Inversion of Nonminimum Phase Wavelets: Optimum Lag SpikingFilters; Discrete Convolution and Circulant Matrices; Discrete and Circular Convolution; Matrix Notation for Circular Convolution; Diagonalization of the Circulant Matrix; Applications of the Circulant; Convolution; Deconvolution; Efficient Computation of Large Problems; Polynomial and FT Wavelet Inversion; Expectations etc.,; The Covariance Matrix Lagrange MultipliersLinear Time Series Modelling; Introduction; The Wold Decomposition Theorem; The Moving Average. MA, Model; Determining the Coefficients of the MA Model; Computing the Minimum Phase Wavelet via the FFT; The Autoregressive, AR, Model; Autocovariance of the AR Process; Estimating the AR Parameters; The Levinson Recursion; Initialization; The Prediction Error Operator, PEO; Phase Properties of the PEO; Proof of the Minimum Delay Property of the PEO; The Autoregressive Moving Average, ARMA, Model; A Very Special ARMA Process MA, AR and ARMA Models in Seismic Modelling and ProcessingExtended AR Models and Applications; A Little Predictive Deconvolution Theory; The Output of Predictive Deconvolution; Remarks; Summary; A Few Words About Nonlinear Time Series; The Principle of Embedding; Summary; Levinson's Recursion and Reflection Coefficients; Theoretical Summary; Summary and Remarks; Minimum Phase Property of the PEO; PROOF I; Eigenvectors of Doubly Symmetric Matrices; Spectral decomposition; Minimum phase property; PROOF II; Discussion; Information Theory and Relevant Issues; Introduction Entropy in Time Series Analysis |
| Record Nr. | UNINA-9910784533103321 |
Ulrych Tadeusz J
|
||
| Amsterdam ; ; London, : Elsevier, 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Inverse theory and applications in geophysics / / Michael S. Zhdanov
| Inverse theory and applications in geophysics / / Michael S. Zhdanov |
| Autore | Zhdanov Mikhail Semenovich |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2015 |
| Descrizione fisica | 1 online resource (731 p.) |
| Disciplina | 550.1515 |
| Collana | Methods in Geochemistry and Geophysics |
| Soggetto topico |
Inversion (Geophysics)
Geophysics - Measurement Functional analysis |
| ISBN | 0-444-62712-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Inverse Theory and Applications in Geophysics; Copyright; Dedication; Contents; Preface to the Second Edition; Preface; Part I: Introduction to Inversion Theory; Chapter 1: Forward and Inverse Problems in Science and Engineering; 1.1 Formulation of Forward and Inverse Problems for Different Physical Fields; 1.1.1 Gravity Field; 1.1.2 Magnetic Field; 1.1.3 Electromagnetic Field; 1.1.4 Seismic Wavefield; 1.2 Existence and Uniqueness of the Inverse Problem Solutions; 1.2.1 Existence of the Solution; 1.2.2 Uniqueness of the Solution; 1.2.3 Practical Uniqueness
1.3 Instability of the Inverse Problem Solution References; Chapter 2: Ill-Posed Problems and the Methods of Their Solution; 2.1 Sensitivity and Resolution of Geophysical Methods; 2.1.1 Formulation of the Inverse Problem in General Mathematical Spaces; 2.1.2 Sensitivity; 2.1.3 Resolution; 2.2 Formulation of Well-Posed and Ill-Posed Problems; 2.2.1 Well-Posed Problems; 2.2.2 Conditionally Well-Posed Problems; 2.2.3 Quasi-Solution of the Ill-Posed Problem; 2.3 Foundations of Regularization Methods of Inverse Problem Solution; 2.3.1 Regularizing Operators; 2.3.2 Stabilizing Functionals 2.3.3 Tikhonov Parametric Functional2.4 Family of Stabilizing Functionals; 2.4.1 Stabilizing Functionals Revisited; 2.4.2 Representation of a Stabilizing Functional in the Form of a Pseudo-Quadratic Functional; 2.5 Definition of the Regularization Parameter; 2.5.1 Optimal Regularization Parameter Selection; 2.5.2 L-Curve Method of Regularization Parameter Selection; References; Part II: Methods of the Solution of Inverse Problems; Chapter 3: Linear Discrete Inverse Problems; 3.1 Linear Least-Squares Inversion; 3.1.1 The Linear Discrete Inverse Problem 3.1.2 Systems of Linear Equations and Their General SolutionsMinimization of the misfit functional; 3.1.3 The Data Resolution Matrix; 3.2 Solution of the Purely Underdetermined Problem; 3.2.1 Underdetermined System of Linear Equations; 3.2.2 The Model Resolution Matrix; 3.3 Weighted Least-Squares Method; 3.4 Applying the Principles of Probability Theory to a Linear Inverse Problem; 3.4.1 Some Formulae and Notations from Probability Theory; 3.4.2 Maximum Likelihood Method; 3.4.3 Chi-Square Fitting; 3.5 Regularization Methods; 3.5.1 The Tikhonov Regularization Method 3.5.2 Application of SLDM Method in Regularized Linear Inverse Problem Solution3.5.3 Integrated Sensitivity; 3.5.4 Definition of the Weighting Matrices for the Model Parameters and Data; 3.5.5 Controlled Sensitivity; 3.5.6 Approximate Regularized Solution of the Linear Inverse Problem; 3.5.7 The Levenberg-Marquardt Method; 3.5.8 The Maximum a Posteriori Estimation Method (the Bayes Estimation); 3.6 The Backus-Gilbert Method; 3.6.1 The Data Resolution Function; 3.6.2 The Spread Function; 3.6.3 Regularized Solution in the Backus-Gilbert Method; References Chapter 4: Iterative Solutions of the Linear Inverse Problem |
| Record Nr. | UNINA-9910797356103321 |
Zhdanov Mikhail Semenovich
|
||
| Amsterdam, Netherlands : , : Elsevier, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Inverse theory and applications in geophysics / / Michael S. Zhdanov
| Inverse theory and applications in geophysics / / Michael S. Zhdanov |
| Autore | Zhdanov Mikhail Semenovich |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2015 |
| Descrizione fisica | 1 online resource (731 p.) |
| Disciplina | 550.1515 |
| Collana | Methods in Geochemistry and Geophysics |
| Soggetto topico |
Inversion (Geophysics)
Geophysics - Measurement Functional analysis |
| ISBN | 0-444-62712-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Inverse Theory and Applications in Geophysics; Copyright; Dedication; Contents; Preface to the Second Edition; Preface; Part I: Introduction to Inversion Theory; Chapter 1: Forward and Inverse Problems in Science and Engineering; 1.1 Formulation of Forward and Inverse Problems for Different Physical Fields; 1.1.1 Gravity Field; 1.1.2 Magnetic Field; 1.1.3 Electromagnetic Field; 1.1.4 Seismic Wavefield; 1.2 Existence and Uniqueness of the Inverse Problem Solutions; 1.2.1 Existence of the Solution; 1.2.2 Uniqueness of the Solution; 1.2.3 Practical Uniqueness
1.3 Instability of the Inverse Problem Solution References; Chapter 2: Ill-Posed Problems and the Methods of Their Solution; 2.1 Sensitivity and Resolution of Geophysical Methods; 2.1.1 Formulation of the Inverse Problem in General Mathematical Spaces; 2.1.2 Sensitivity; 2.1.3 Resolution; 2.2 Formulation of Well-Posed and Ill-Posed Problems; 2.2.1 Well-Posed Problems; 2.2.2 Conditionally Well-Posed Problems; 2.2.3 Quasi-Solution of the Ill-Posed Problem; 2.3 Foundations of Regularization Methods of Inverse Problem Solution; 2.3.1 Regularizing Operators; 2.3.2 Stabilizing Functionals 2.3.3 Tikhonov Parametric Functional2.4 Family of Stabilizing Functionals; 2.4.1 Stabilizing Functionals Revisited; 2.4.2 Representation of a Stabilizing Functional in the Form of a Pseudo-Quadratic Functional; 2.5 Definition of the Regularization Parameter; 2.5.1 Optimal Regularization Parameter Selection; 2.5.2 L-Curve Method of Regularization Parameter Selection; References; Part II: Methods of the Solution of Inverse Problems; Chapter 3: Linear Discrete Inverse Problems; 3.1 Linear Least-Squares Inversion; 3.1.1 The Linear Discrete Inverse Problem 3.1.2 Systems of Linear Equations and Their General SolutionsMinimization of the misfit functional; 3.1.3 The Data Resolution Matrix; 3.2 Solution of the Purely Underdetermined Problem; 3.2.1 Underdetermined System of Linear Equations; 3.2.2 The Model Resolution Matrix; 3.3 Weighted Least-Squares Method; 3.4 Applying the Principles of Probability Theory to a Linear Inverse Problem; 3.4.1 Some Formulae and Notations from Probability Theory; 3.4.2 Maximum Likelihood Method; 3.4.3 Chi-Square Fitting; 3.5 Regularization Methods; 3.5.1 The Tikhonov Regularization Method 3.5.2 Application of SLDM Method in Regularized Linear Inverse Problem Solution3.5.3 Integrated Sensitivity; 3.5.4 Definition of the Weighting Matrices for the Model Parameters and Data; 3.5.5 Controlled Sensitivity; 3.5.6 Approximate Regularized Solution of the Linear Inverse Problem; 3.5.7 The Levenberg-Marquardt Method; 3.5.8 The Maximum a Posteriori Estimation Method (the Bayes Estimation); 3.6 The Backus-Gilbert Method; 3.6.1 The Data Resolution Function; 3.6.2 The Spread Function; 3.6.3 Regularized Solution in the Backus-Gilbert Method; References Chapter 4: Iterative Solutions of the Linear Inverse Problem |
| Record Nr. | UNINA-9910811684503321 |
Zhdanov Mikhail Semenovich
|
||
| Amsterdam, Netherlands : , : Elsevier, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Inverse theory for petroleum reservoir characterization and history matching / / Dean S. Oliver, Albert C. Reynolds, Ning Liu
| Inverse theory for petroleum reservoir characterization and history matching / / Dean S. Oliver, Albert C. Reynolds, Ning Liu |
| Autore | Oliver Dean Stuart |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2008 |
| Descrizione fisica | 1 online resource (xii, 380 pages) : digital, PDF file(s) |
| Disciplina | 553.2801515357 |
| Soggetto topico |
Petroleum reserves - Mathematical models
Inversion (Geophysics) |
| ISBN |
9780511535642 (e-book)
9780521881517 (hbk.) 1-107-18506-8 1-281-38354-6 9786611383541 0-511-40237-6 0-511-39775-5 0-511-39698-8 0-511-39946-4 0-511-39625-2 1-60119-749-7 0-511-53564-3 0-511-39851-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Examples of inverse problems -- Estimation for linear inverse problems -- Probability and estimation -- Descriptive geostatistics -- Data -- Maximum a posteriori estimate -- Optimization for nonlinear problems using sensitivities -- Sensitivity coefficients -- Quantifying uncertainty -- Recursive methods. |
| Altri titoli varianti | Inverse Theory for Petroleum Reservoir Characterization & History Matching |
| Record Nr. | UNINA-9911006629503321 |
Oliver Dean Stuart
|
||
| Cambridge : , : Cambridge University Press, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Parameter estimation and inverse problems / Richard C. Aster, Clifford H. Thurber
| Parameter estimation and inverse problems / Richard C. Aster, Clifford H. Thurber |
| Autore | Aster, Richard C. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Waltham, MA : Academic Press, 2013 |
| Descrizione fisica | x, 360 p. : ill. ; 24 cm |
| Disciplina | 515.357 |
| Altri autori (Persone) | Thurber, Clifford H |
| Soggetto topico |
Parameter estimation
Inverse problems (Differential equations) Inversion (Geophysics) Mathematical models |
| ISBN | 9780123850485 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991002944609707536 |
Aster, Richard C.
|
||
| Waltham, MA : Academic Press, 2013 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Seismic inversion / / Gerard T. Schuster
| Seismic inversion / / Gerard T. Schuster |
| Autore | Schuster Gerard Thomas <1950-> |
| Pubbl/distr/stampa | : SEG (Society of Exploration Geophysicists) |
| Disciplina | 551.22028/7 |
| Soggetto topico |
Seismic traveltime inversion
Seismic reflection method - Deconvolution Seismic tomography Inversion (Geophysics) Seismology - Mathematics |
| ISBN |
1-56080-342-8
1-5231-1618-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Part I. Iterative optimization methods -- 1. Introduction to seismic inversion -- 2. Introduction to gradient optimization -- 3. Steepest-descent method -- 4. Conjugate-gradient and quasi-Newton methods.
Part II. Traveltime tomography -- 5. Raypath traveltime tomography -- 6. Traveltime tomography : assessing model accuracy. Part III. Numerical modeling -- 7. Traveltime calculation by solution of the eikonal equation -- 8. Numerical solutions to the wave equation -- 9. The viscoacoustic wave equation. Part IV. Reflection migration -- 10. Forward and adjoint modeling using Green's functions -- 11. Reverse time migration -- 12. Wavepaths -- 13. Generalized diffraction-stack migration and filtering of coherent noise -- 14. Resolution limits for wave equation imaging. Part V. Least-squares migration -- 15. Iterative least-squares migration -- 16. Viscoacoustic least-squares migration -- 17. Least-squares migration filtering -- 18. Migration deconvolution. Part VI. Waveform inversion -- 19. Acoustic waveform inversion and its numerical implementation -- 20. Wave-equation inversion of skeletonized data -- 21. Acoustic waveform inversion : case histories -- 22. Elastic and viscoelastic full-waveform inversion -- 23. Vertical transverse isotropy FWI. Part VII. Image-domain inversion -- 24. Classical migration velocity analysis -- 25. Generalized differential semblance optimization -- 26. Generalized image-domain inversion. |
| Record Nr. | UNINA-9911006972303321 |
Schuster Gerard Thomas <1950->
|
||
| : SEG (Society of Exploration Geophysicists) | ||
| Lo trovi qui: Univ. Federico II | ||
| ||