Applied inverse problems : lectures presented at the RCP 264, "Etude interdisciplinaire des problèmes inverses" / sponsored by the Centre National de la Recherche Scientifique ; edited by P. C. Sabatier |
Autore | Centre National de la Recherche Scientifique (France) |
Pubbl/distr/stampa | Berlin : Springer, 1978 |
Descrizione fisica | v, 425 p. : ill. ; 25 cm |
Disciplina | 530.1/5/535 |
Altri autori (Persone) | Sabatier, Pierre Celestin |
Collana | Lecture notes in physics / edited by J. Ehlers...[et al.] ; 85 |
Soggetto topico |
Inverse problems (Differential equations)
Mathematical physics Geophysics - Mathematics |
Classificazione |
LC QC20.7.D5
510.35 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000816359707536 |
Centre National de la Recherche Scientifique (France)
![]() |
||
Berlin : Springer, 1978 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Basic methods of tomography and inverse problems : a set of lectures by G.T. Herman, H.K. Tuy, K.J. Langenberg and P.C. Sabatier / edited by P.C. Sabatier |
Autore | Sabatier, Pierre Celestin |
Edizione | [1st ed] |
Pubbl/distr/stampa | Bristol : Adam Hilger Ltd, c1987 |
Descrizione fisica | xii, 671 p. : ill. ; 24 cm. |
Collana | Malvern Physics Series / E.R. Pike ; 4 |
Soggetto topico |
Inverse problems (Differential equations)
Tomography |
ISBN | 0852744757 |
Classificazione |
53.2.24
53.2.46 53.9.7 510.34 510.42 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000833799707536 |
Sabatier, Pierre Celestin
![]() |
||
Bristol : Adam Hilger Ltd, c1987 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (383 p.) |
Disciplina |
515/.357
519.542 |
Altri autori (Persone) | IdierJérôme |
Collana | Digital signal and image processing series. |
Soggetto topico |
Inverse problems (Differential equations)
Bayesian statistical decision theory |
ISBN |
1-282-16506-2
9786612165061 0-470-61119-7 0-470-39382-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control 2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices 4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result 4.5.4. Fast Kalman filtering |
Record Nr. | UNINA-9910139505603321 |
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (383 p.) |
Disciplina |
515/.357
519.542 |
Altri autori (Persone) | IdierJérôme |
Collana | Digital signal and image processing series. |
Soggetto topico |
Inverse problems (Differential equations)
Bayesian statistical decision theory |
ISBN |
1-282-16506-2
9786612165061 0-470-61119-7 0-470-39382-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control 2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices 4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result 4.5.4. Fast Kalman filtering |
Record Nr. | UNINA-9910830737403321 |
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (383 p.) |
Disciplina |
515/.357
519.542 |
Altri autori (Persone) | IdierJérôme |
Collana | Digital signal and image processing series. |
Soggetto topico |
Inverse problems (Differential equations)
Bayesian statistical decision theory |
ISBN |
1-282-16506-2
9786612165061 0-470-61119-7 0-470-39382-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control 2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices 4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result 4.5.4. Fast Kalman filtering |
Record Nr. | UNINA-9910877313903321 |
London, : ISTE | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex Datasets and Inverse Problems: Tomography, Networks and Beyond |
Pubbl/distr/stampa | [Place of publication not identified], : Institute of Mathematical Statistics, 2007 |
Descrizione fisica | 1 online resource (viii, 273 pages) : illustrations |
Disciplina | 515.357 |
Collana | Lecture notes-monograph series |
Soggetto topico | Inverse problems (Differential equations) |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deconvolution by simulation -- An iterative tomogravity algorithm for the estimation of network traffic -- Statistical inverse problems in active network tomography -- Network tomography based on 1-D projections -- Using data network metrics, graphics, and topology to explore network characteristics -- A flexible Bayesian generalized linear model for dichotomous response data with an application to text categorization -- Estimating the proportion of differentially expressed genes in comparative DNA microarray experiments -- Functional analysis via extensions of the band depth -- A representative sampling plan for auditing health insurance claims -- Confidence distribution (CD) -- distribution estimator of a parameter -- Empirical Bayes methods for controlling the false discovery rate with dependent data -- A smoothing model for sample disclosure risk estimation -- A note on the U, V method of estimation -- Local polynomial regression on unknown manifolds -- Shape restricted regression with random Bernstein polynomials -- Non- and semi-parametric analysis of failure time data with missing failure indicators -- Nonparametric estimation of a distribution function under biased sampling and censoring -- Estimating a Polya frequency function 2 -- A comparison of the accuracy of saddlepoint conditional cumulative distribution function approximations -- Multivariate medians and measure-symmetrization -- Statistical thinking: From Tukey to Vardi and beyond. |
Record Nr. | UNINA-9910482889403321 |
[Place of publication not identified], : Institute of Mathematical Statistics, 2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex Datasets and Inverse Problems: Tomography, Networks and Beyond |
Pubbl/distr/stampa | [Place of publication not identified], : Institute of Mathematical Statistics, 2007 |
Descrizione fisica | 1 online resource (viii, 273 pages) : illustrations |
Disciplina | 515.357 |
Collana | Lecture notes-monograph series |
Soggetto topico | Inverse problems (Differential equations) |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deconvolution by simulation -- An iterative tomogravity algorithm for the estimation of network traffic -- Statistical inverse problems in active network tomography -- Network tomography based on 1-D projections -- Using data network metrics, graphics, and topology to explore network characteristics -- A flexible Bayesian generalized linear model for dichotomous response data with an application to text categorization -- Estimating the proportion of differentially expressed genes in comparative DNA microarray experiments -- Functional analysis via extensions of the band depth -- A representative sampling plan for auditing health insurance claims -- Confidence distribution (CD) -- distribution estimator of a parameter -- Empirical Bayes methods for controlling the false discovery rate with dependent data -- A smoothing model for sample disclosure risk estimation -- A note on the U, V method of estimation -- Local polynomial regression on unknown manifolds -- Shape restricted regression with random Bernstein polynomials -- Non- and semi-parametric analysis of failure time data with missing failure indicators -- Nonparametric estimation of a distribution function under biased sampling and censoring -- Estimating a Polya frequency function 2 -- A comparison of the accuracy of saddlepoint conditional cumulative distribution function approximations -- Multivariate medians and measure-symmetrization -- Statistical thinking: From Tukey to Vardi and beyond. |
Record Nr. | UNISA-996210067603316 |
[Place of publication not identified], : Institute of Mathematical Statistics, 2007 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Complex Webs : Anticipating the Improbable / Bruce J. West, Paolo Grigolini |
Autore | West, Bruce J. |
Pubbl/distr/stampa | Cambridge : Cambridge University Press, c2011 |
Descrizione fisica | x, 375 p. : ill. ; 26 cm |
Disciplina | 003.72 |
Altri autori (Persone) | Grigolini, Paolo, 1940-author |
Soggetto topico |
Dynamics - Statistical methods
Inverse relationships (Mathematics) Inverse problems (Differential equations) |
ISBN | 9780521113663 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; 1. Webs; 2. Webs, trees and branches; 3. Mostly linear dynamics; 4. Random walks and chaos; 5. Non-analytic dynamics; 6. Brief recent history of webs; 7. Dynamics of chance; 8. Synopsis. |
Record Nr. | UNISALENTO-991003599029707536 |
West, Bruce J.
![]() |
||
Cambridge : Cambridge University Press, c2011 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Composite type equations and inverse problems / / A.I. Kozhanov |
Autore | Kozhanov A. I. |
Edizione | [Reprint 2014] |
Pubbl/distr/stampa | Utrecht, the Netherlands : , : VSP, , 1999 |
Descrizione fisica | 1 online resource (181 pages) |
Collana | Inverse and ill-posed problems series |
Soggetto topico |
Boundary value problems
Differential equations, Partial Inverse problems (Differential equations) |
Soggetto genere / forma | Electronic books. |
ISBN | 3-11-094327-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. Composite type equations as the original mathematical object -- Chapter 2. Solvability of inverse problems and other applications -- Conclusion -- Bibliography |
Record Nr. | UNINA-9910463704803321 |
Kozhanov A. I.
![]() |
||
Utrecht, the Netherlands : , : VSP, , 1999 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Composite type equations and inverse problems / / A.I. Kozhanov |
Autore | Kozhanov A. I. |
Edizione | [Reprint 2014] |
Pubbl/distr/stampa | Utrecht, the Netherlands : , : VSP, , 1999 |
Descrizione fisica | 1 online resource (181 pages) |
Disciplina | 515.353 |
Collana | Inverse and ill-posed problems series |
Soggetto topico |
Boundary value problems
Differential equations, Partial Inverse problems (Differential equations) |
ISBN | 3-11-094327-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. Composite type equations as the original mathematical object -- Chapter 2. Solvability of inverse problems and other applications -- Conclusion -- Bibliography |
Record Nr. | UNINA-9910788954403321 |
Kozhanov A. I.
![]() |
||
Utrecht, the Netherlands : , : VSP, , 1999 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|