Blockchain for distributed systems security / / edited by Sachin S. Shetty, Charles A. Kamhoua, Laurent L. Njilla |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE, , [2019] |
Descrizione fisica | 1 online resource (347 pages) : illustrations |
Disciplina | 005.824 |
Soggetto topico |
Blockchains (Databases)
Internet auctions - Security measures |
ISBN |
1-119-51958-6
1-119-51962-4 1-119-51959-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xiii -- Preface xv -- List of Contributors xix -- Part I Introduction to Blockchain 1 -- 1 Introduction 3 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 1.1 Blockchain Overview 3 -- 1.1.1 Blockchain Building Blocks 5 -- 1.1.2 Blockchain Commercial Use Cases 6 -- 1.1.3 Blockchain Military Cyber Operations Use Cases 11 -- 1.1.4 Blockchain Challenges 13 -- 1.2 Overview of the Book 16 -- 1.2.1 Chapter 2: Distributed Consensus Protocols and Algorithms 16 -- 1.2.2 Chapter 3: Overview of Attack Surfaces in Blockchain 17 -- 1.2.3 Chapter 4: Data Provenance in Cloud Storage with Blockchain 17 -- 1.2.4 Chapter 5: Blockchain-based Solution to Automotive Security and Privacy 18 -- 1.2.5 Chapter 6: Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 19 -- 1.2.6 Chapter 7: Blockchain-enabled Information Sharing Framework for Cybersecurity 19 -- 1.2.7 Chapter 8: Blockcloud Security Analysis 20 -- 1.2.8 Chapter 9: Security and Privacy of Permissioned and Permissionless Blockchain 20 -- 1.2.9 Chapter 10: Shocking Public Blockchains’ Memory with Unconfirmed Transactions-New DDoS Attacks and Countermeasures 21 -- 1.2.10 Chapter 11: Preventing Digital Currency Miners From Launching Attacks Against Mining Pools by a Reputation-Based Paradigm 21 -- 1.2.11 Chapter 12: Private Blockchain Configurations for Improved IoT Security 22 -- 1.2.12 Chapter 13: Blockchain Evaluation Platform 22 -- References 23 -- 2 Distributed Consensus Protocols and Algorithms 25 /Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou -- 2.1 Introduction 25 -- 2.2 Fault-tolerant Consensus in a Distributed System 26 -- 2.2.1 The System Model 26 -- 2.2.2 BFT Consensus 28 -- 2.2.3 The OM Algorithm 29 -- 2.2.4 Practical Consensus Protocols in Distributed Computing 30 -- 2.3 The Nakamoto Consensus 37 -- 2.3.1 The Consensus Problem 38 -- 2.3.2 Network Model 38 -- 2.3.3 The Consensus Protocol 39 -- 2.4 Emerging Blockchain Consensus Algorithms 40 -- 2.4.1 Proof of Stake 41.
2.4.2 BFT-based Consensus 42 -- 2.4.3 Proof of Elapsed Time (PoET) 44 -- 2.4.4 Ripple 45 -- 2.5 Evaluation and Comparison 47 -- 2.6 Summary 47 -- Acknowledgment 49 -- References 49 -- 3 Overview of Attack Surfaces in Blockchain 51 /Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, DaeHun Nyang, and Aziz Mohaisen -- 3.1 Introduction 51 -- 3.2 Overview of Blockchain and its Operations 53 -- 3.3 Blockchain Attacks 54 -- 3.3.1 Blockchain Fork 54 -- 3.3.2 Stale Blocks and Orphaned Blocks 54 -- 3.3.3 Countering Blockchain Structure Attacks 55 -- 3.4 Blockchain’s Peer-to-Peer System 55 -- 3.4.1 Selfish Mining 56 -- 3.4.2 The 51% Attack 57 -- 3.4.3 DNS Attacks 57 -- 3.4.4 DDoS Attacks 58 -- 3.4.5 Consensus Delay 59 -- 3.4.6 Countering Peer-to-Peer Attacks 59 -- 3.5 Application Oriented Attacks 60 -- 3.5.1 Blockchain Ingestion 60 -- 3.5.2 Double Spending 60 -- 3.5.3 Wallet Theft 61 -- 3.5.4 Countering Application Oriented Attacks 61 -- 3.6 Related Work 61 -- 3.7 Conclusion and Future Work 62 -- References 62 -- Part II Blockchain Solutions for Distributed System Security 67 -- 4 ProvChain: Blockchain-based Cloud Data Provenance 69 /Xueping Liang, Sachin S. Shetty, Deepak Tosh, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat -- 4.1 Introduction 69 -- 4.2 Background and Related Work 70 -- 4.2.1 Data Provenance 70 -- 4.2.2 Data Provenance in the Cloud 71 -- 4.2.3 Blockchain 73 -- 4.2.4 Blockchain and Data Provenance 74 -- 4.3 ProvChain Architecture 75 -- 4.3.1 Architecture Overview 76 -- 4.3.2 Preliminaries and Concepts 77 -- 4.3.3 Threat Model 78 -- 4.3.4 Key Establishment 78 -- 4.4 ProvChain Implementation 79 -- 4.4.1 Provenance Data Collection and Storage 80 -- 4.4.2 Provenance Data Validation 83 -- 4.5 Evaluation 85 -- 4.5.1 Summary of ProvChain’s Capabilities 85 -- 4.5.2 Performance and Overhead 86 -- 4.6 Conclusions and Future Work 90 -- Acknowledgment 91 -- References 92 -- 5 A Blockchain-based Solution to Automotive Security and Privacy 95 /Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak. 5.1 Introduction 95 -- 5.2 An Introduction to Blockchain 98 -- 5.3 The Proposed Framework 101 -- 5.4 Applications 103 -- 5.4.1 Remote Software Updates 103 -- 5.4.2 Insurance 105 -- 5.4.3 Electric Vehicles and Smart Charging Services 105 -- 5.4.4 Car-sharing Services 106 -- 5.4.5 Supply Chain 106 -- 5.4.6 Liability 107 -- 5.5 Evaluation and Discussion 108 -- 5.5.1 Security and Privacy Analysis 108 -- 5.5.2 Performance Evaluation 109 -- 5.6 Related Works 112 -- 5.7 Conclusion 113 -- References 114 -- 6 Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 117 /Ao Lei, Yue Cao, Shihan Bao, Philip Asuquom, Haitham Cruickshank, and Zhili Sun -- 6.1 Introduction 117 -- 6.2 Use Case 119 -- 6.2.1 Message Handover in VCS 120 -- 6.3 Blockchain-based Dynamic Key Management Scheme 124 -- 6.4 Dynamic Transaction Collection Algorithm 125 -- 6.4.1 Transaction Format 125 -- 6.4.2 Block Format 127 -- 6.5 Time Composition 128 -- 6.5.1 Dynamic Transaction Collection Algorithm 129 -- 6.6 Performance Evaluation 130 -- 6.6.1 Experimental Assumptions and Setup 130 -- 6.6.2 Processing Time of Cryptographic Schemes 132 -- 6.6.3 Handover Time 133 -- 6.6.4 Performance of the Dynamic Transaction Collection Algorithm 135 -- 6.7 Conclusion and Future Work 138 -- References 140 -- 7 Blockchain-enabled Information Sharing Framework for Cybersecurity 143 /Abdulhamid Adebayo, Danda B. Rawat, Laurent Njilla, and Charles A. Kamhoua -- 7.1 Introduction 143 -- 7.2 The BIS Framework 145 -- 7.3 Transactions on BIS 146 -- 7.4 Cyberattack Detection and Information Sharing 147 -- 7.5 Cross-group Attack Game in Blockchain-based BIS Framework: One-way Attack 149 -- 7.6 Cross-group Attack Game in Blockchain-based BIS Framework: Two-way Attack 151 -- 7.7 Stackelberg Game for Cyberattack and Defense Analysis 152 -- 7.8 Conclusion 156 -- References 157 -- Part III Blockchain Security 159 -- 8 Blockcloud Security Analysis 161 /Deepak Tosh, Sachin S. Shetty, Xueping Liang, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat. 8.1 Introduction 161 -- 8.2 Blockchain Consensus Mechanisms 163 -- 8.2.1 Proof-of-Work (PoW) Consensus 164 -- 8.2.2 Proof-of-Stake (PoS) Consensus 165 -- 8.2.3 Proof-of-Activity (PoA) Consensus 167 -- 8.2.4 Practical Byzantine Fault Tolerance (PBFT) Consensus 168 -- 8.2.5 Proof-of-Elapsed-Time (PoET) Consensus 169 -- 8.2.6 Proof-of-Luck (PoL) Consensus 170 -- 8.2.7 Proof-of-Space (PoSpace) Consensus 170 -- 8.3 Blockchain Cloud and Associated Vulnerabilities 171 -- 8.3.1 Blockchain and Cloud Security 171 -- 8.3.2 Blockchain Cloud Vulnerabilities 174 -- 8.4 System Model 179 -- 8.5 Augmenting with Extra Hash Power 180 -- 8.6 Disruptive Attack Strategy Analysis 181 -- 8.6.1 Proportional Reward 181 -- 8.6.2 Pay-per-last N-shares (PPLNS) Reward 184 -- 8.7 Simulation Results and Discussion 187 -- 8.8 Conclusions and Future Directions 188 -- Acknowledgment 190 -- References 190 -- 9 Permissioned and Permissionless Blockchains 193 /Andrew Miller -- 9.1 Introduction 193 -- 9.2 On Choosing Your Peers Wisely 194 -- 9.3 Committee Election Mechanisms 196 -- 9.4 Privacy in Permissioned and Permissionless Blockchains 199 -- 9.5 Conclusion 201 -- References 202 -- 10 Shocking Blockchain’s Memory with Unconfirmed Transactions: New DDoS Attacks and Countermeasures 205 /Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Kevin Kwiat, and Aziz Mohaisen -- 10.1 Introduction 205 -- 10.2 Related Work 207 -- 10.3 An Overview of Blockchain and Lifecycle 208 -- 10.3.1 DDoS Attack on Mempools 210 -- 10.3.2 Data Collection for Evaluation 210 -- 10.4 Threat Model 211 -- 10.5 Attack Procedure 212 -- 10.5.1 The Distribution Phase 214 -- 10.5.2 The Attack Phase 214 -- 10.5.3 Attack Cost 214 -- 10.6 Countering the Mempool Attack 215 -- 10.6.1 Fee-based Mempool Design 216 -- 10.6.2 Age-based Countermeasures 221 -- 10.7 Experiment and Results 224 -- 10.8 Conclusion 227 -- References 227 -- 11 Preventing Digital Currency Miners from Launching Attacks Against Mining Pools Using a Reputation-based Paradigm 233 /Mehrdad Nojoumian, Arash Golchubian, Laurent Njilla, Kevin Kwiat, and Charles A. Kamhoua. 11.1 Introduction 233 -- 11.2 Preliminaries 234 -- 11.2.1 Digital Currencies: Terminologies and Mechanics 234 -- 11.2.2 Game Theory: Basic Notions and Definitions 235 -- 11.3 Literature Review 236 -- 11.4 Reputation-based Mining Model and Setting 238 -- 11.5 Mining in a Reputation-based Model 240 -- 11.5.1 Prevention of the Re-entry Attack 240 -- 11.5.2 Technical Discussion on Detection Mechanisms 241 -- 11.5.3 Colluding Miner’s Dilemma 243 -- 11.5.4 Repeated Mining Game 244 -- 11.5.5 Colluding Miners’ Preferences 245 -- 11.5.6 Colluding Miners’ Utilities 245 -- 11.6 Evaluation of Our Model Using Game-theoretical Analyses 246 -- 11.7 Concluding Remarks 248 -- Acknowledgment 249 -- References 249 -- Part IV Blockchain Implementation 253 -- 12 Private Blockchain Configurations for Improved IoT Security 255 /Adriaan Larmuseau and Devu Manikantan Shila -- 12.1 Introduction 255 -- 12.2 Blockchain-enabled Gateway 257 -- 12.2.1 Advantages 257 -- 12.2.2 Limitations 258 -- 12.2.3 Private Ethereum Gateways for Access Control 259 -- 12.2.4 Evaluation 262 -- 12.3 Blockchain-enabled Smart End Devices 263 -- 12.3.1 Advantages 263 -- 12.3.2 Limitations 264 -- 12.3.3 Private Hyperledger Blockchain-enabled Smart Sensor Devices 264 -- 12.3.4 Evaluation 269 -- 12.4 Related Work 270 -- 12.5 Conclusion 271 -- References 271 -- 13 Blockchain Evaluation Platform 275 /Peter Foytik and Sachin S. Shetty -- 13.1 Introduction 275 -- 13.1.1 Architecture 276 -- 13.1.2 Distributed Ledger 276 -- 13.1.3 Participating Nodes 277 -- 13.1.4 Communication 277 -- 13.1.5 Consensus 278 -- 13.2 Hyperledger Fabric 279 -- 13.2.1 Node Types 279 -- 13.2.2 Docker 280 -- 13.2.3 Hyperledger Fabric Example Exercise 281 -- 13.2.4 Running the First Network 281 -- 13.2.5 Running the Kafka Network 286 -- 13.3 Measures of Performance 291 -- 13.3.1 Performance Metrics With the Proof-of-Stake Simulation 293 -- 13.3.2 Performance Measures With the Hyperledger Fabric Example 296 -- 13.4 Simple Blockchain Simulation 300. 13.5 Blockchain Simulation Introduction 303 -- 13.5.1 Methodology 304 -- 13.5.2 Simulation Integration With Live Blockchain 304 -- 13.5.3 Simulation Integration With Simulated Blockchain 306 -- 13.5.4 Verification and Validation 306 -- 13.5.5 Example 307 -- 13.6 Conclusion and Future Work 309 -- References 310 -- 14 Summary and Future Work 311 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 14.1 Introduction 311 -- 14.2 Blockchain and Cloud Security 312 -- 14.3 Blockchain and IoT Security 312 -- 14.4 Blockchain Security and Privacy 314 -- 14.5 Experimental Testbed and Performance Evaluation 316 -- 14.6 The Future 316 -- Index 319. |
Record Nr. | UNINA-9910555114003321 |
Hoboken, New Jersey : , : Wiley-IEEE, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Blockchain for distributed systems security / / edited by Sachin S. Shetty, Charles A. Kamhoua, Laurent L. Njilla |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE, , [2019] |
Descrizione fisica | 1 online resource (347 pages) : illustrations |
Disciplina | 005.824 |
Soggetto topico |
Blockchains (Databases)
Internet auctions - Security measures |
ISBN |
1-119-51958-6
1-119-51962-4 1-119-51959-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xiii -- Preface xv -- List of Contributors xix -- Part I Introduction to Blockchain 1 -- 1 Introduction 3 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 1.1 Blockchain Overview 3 -- 1.1.1 Blockchain Building Blocks 5 -- 1.1.2 Blockchain Commercial Use Cases 6 -- 1.1.3 Blockchain Military Cyber Operations Use Cases 11 -- 1.1.4 Blockchain Challenges 13 -- 1.2 Overview of the Book 16 -- 1.2.1 Chapter 2: Distributed Consensus Protocols and Algorithms 16 -- 1.2.2 Chapter 3: Overview of Attack Surfaces in Blockchain 17 -- 1.2.3 Chapter 4: Data Provenance in Cloud Storage with Blockchain 17 -- 1.2.4 Chapter 5: Blockchain-based Solution to Automotive Security and Privacy 18 -- 1.2.5 Chapter 6: Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 19 -- 1.2.6 Chapter 7: Blockchain-enabled Information Sharing Framework for Cybersecurity 19 -- 1.2.7 Chapter 8: Blockcloud Security Analysis 20 -- 1.2.8 Chapter 9: Security and Privacy of Permissioned and Permissionless Blockchain 20 -- 1.2.9 Chapter 10: Shocking Public Blockchains’ Memory with Unconfirmed Transactions-New DDoS Attacks and Countermeasures 21 -- 1.2.10 Chapter 11: Preventing Digital Currency Miners From Launching Attacks Against Mining Pools by a Reputation-Based Paradigm 21 -- 1.2.11 Chapter 12: Private Blockchain Configurations for Improved IoT Security 22 -- 1.2.12 Chapter 13: Blockchain Evaluation Platform 22 -- References 23 -- 2 Distributed Consensus Protocols and Algorithms 25 /Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou -- 2.1 Introduction 25 -- 2.2 Fault-tolerant Consensus in a Distributed System 26 -- 2.2.1 The System Model 26 -- 2.2.2 BFT Consensus 28 -- 2.2.3 The OM Algorithm 29 -- 2.2.4 Practical Consensus Protocols in Distributed Computing 30 -- 2.3 The Nakamoto Consensus 37 -- 2.3.1 The Consensus Problem 38 -- 2.3.2 Network Model 38 -- 2.3.3 The Consensus Protocol 39 -- 2.4 Emerging Blockchain Consensus Algorithms 40 -- 2.4.1 Proof of Stake 41.
2.4.2 BFT-based Consensus 42 -- 2.4.3 Proof of Elapsed Time (PoET) 44 -- 2.4.4 Ripple 45 -- 2.5 Evaluation and Comparison 47 -- 2.6 Summary 47 -- Acknowledgment 49 -- References 49 -- 3 Overview of Attack Surfaces in Blockchain 51 /Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, DaeHun Nyang, and Aziz Mohaisen -- 3.1 Introduction 51 -- 3.2 Overview of Blockchain and its Operations 53 -- 3.3 Blockchain Attacks 54 -- 3.3.1 Blockchain Fork 54 -- 3.3.2 Stale Blocks and Orphaned Blocks 54 -- 3.3.3 Countering Blockchain Structure Attacks 55 -- 3.4 Blockchain’s Peer-to-Peer System 55 -- 3.4.1 Selfish Mining 56 -- 3.4.2 The 51% Attack 57 -- 3.4.3 DNS Attacks 57 -- 3.4.4 DDoS Attacks 58 -- 3.4.5 Consensus Delay 59 -- 3.4.6 Countering Peer-to-Peer Attacks 59 -- 3.5 Application Oriented Attacks 60 -- 3.5.1 Blockchain Ingestion 60 -- 3.5.2 Double Spending 60 -- 3.5.3 Wallet Theft 61 -- 3.5.4 Countering Application Oriented Attacks 61 -- 3.6 Related Work 61 -- 3.7 Conclusion and Future Work 62 -- References 62 -- Part II Blockchain Solutions for Distributed System Security 67 -- 4 ProvChain: Blockchain-based Cloud Data Provenance 69 /Xueping Liang, Sachin S. Shetty, Deepak Tosh, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat -- 4.1 Introduction 69 -- 4.2 Background and Related Work 70 -- 4.2.1 Data Provenance 70 -- 4.2.2 Data Provenance in the Cloud 71 -- 4.2.3 Blockchain 73 -- 4.2.4 Blockchain and Data Provenance 74 -- 4.3 ProvChain Architecture 75 -- 4.3.1 Architecture Overview 76 -- 4.3.2 Preliminaries and Concepts 77 -- 4.3.3 Threat Model 78 -- 4.3.4 Key Establishment 78 -- 4.4 ProvChain Implementation 79 -- 4.4.1 Provenance Data Collection and Storage 80 -- 4.4.2 Provenance Data Validation 83 -- 4.5 Evaluation 85 -- 4.5.1 Summary of ProvChain’s Capabilities 85 -- 4.5.2 Performance and Overhead 86 -- 4.6 Conclusions and Future Work 90 -- Acknowledgment 91 -- References 92 -- 5 A Blockchain-based Solution to Automotive Security and Privacy 95 /Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak. 5.1 Introduction 95 -- 5.2 An Introduction to Blockchain 98 -- 5.3 The Proposed Framework 101 -- 5.4 Applications 103 -- 5.4.1 Remote Software Updates 103 -- 5.4.2 Insurance 105 -- 5.4.3 Electric Vehicles and Smart Charging Services 105 -- 5.4.4 Car-sharing Services 106 -- 5.4.5 Supply Chain 106 -- 5.4.6 Liability 107 -- 5.5 Evaluation and Discussion 108 -- 5.5.1 Security and Privacy Analysis 108 -- 5.5.2 Performance Evaluation 109 -- 5.6 Related Works 112 -- 5.7 Conclusion 113 -- References 114 -- 6 Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 117 /Ao Lei, Yue Cao, Shihan Bao, Philip Asuquom, Haitham Cruickshank, and Zhili Sun -- 6.1 Introduction 117 -- 6.2 Use Case 119 -- 6.2.1 Message Handover in VCS 120 -- 6.3 Blockchain-based Dynamic Key Management Scheme 124 -- 6.4 Dynamic Transaction Collection Algorithm 125 -- 6.4.1 Transaction Format 125 -- 6.4.2 Block Format 127 -- 6.5 Time Composition 128 -- 6.5.1 Dynamic Transaction Collection Algorithm 129 -- 6.6 Performance Evaluation 130 -- 6.6.1 Experimental Assumptions and Setup 130 -- 6.6.2 Processing Time of Cryptographic Schemes 132 -- 6.6.3 Handover Time 133 -- 6.6.4 Performance of the Dynamic Transaction Collection Algorithm 135 -- 6.7 Conclusion and Future Work 138 -- References 140 -- 7 Blockchain-enabled Information Sharing Framework for Cybersecurity 143 /Abdulhamid Adebayo, Danda B. Rawat, Laurent Njilla, and Charles A. Kamhoua -- 7.1 Introduction 143 -- 7.2 The BIS Framework 145 -- 7.3 Transactions on BIS 146 -- 7.4 Cyberattack Detection and Information Sharing 147 -- 7.5 Cross-group Attack Game in Blockchain-based BIS Framework: One-way Attack 149 -- 7.6 Cross-group Attack Game in Blockchain-based BIS Framework: Two-way Attack 151 -- 7.7 Stackelberg Game for Cyberattack and Defense Analysis 152 -- 7.8 Conclusion 156 -- References 157 -- Part III Blockchain Security 159 -- 8 Blockcloud Security Analysis 161 /Deepak Tosh, Sachin S. Shetty, Xueping Liang, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat. 8.1 Introduction 161 -- 8.2 Blockchain Consensus Mechanisms 163 -- 8.2.1 Proof-of-Work (PoW) Consensus 164 -- 8.2.2 Proof-of-Stake (PoS) Consensus 165 -- 8.2.3 Proof-of-Activity (PoA) Consensus 167 -- 8.2.4 Practical Byzantine Fault Tolerance (PBFT) Consensus 168 -- 8.2.5 Proof-of-Elapsed-Time (PoET) Consensus 169 -- 8.2.6 Proof-of-Luck (PoL) Consensus 170 -- 8.2.7 Proof-of-Space (PoSpace) Consensus 170 -- 8.3 Blockchain Cloud and Associated Vulnerabilities 171 -- 8.3.1 Blockchain and Cloud Security 171 -- 8.3.2 Blockchain Cloud Vulnerabilities 174 -- 8.4 System Model 179 -- 8.5 Augmenting with Extra Hash Power 180 -- 8.6 Disruptive Attack Strategy Analysis 181 -- 8.6.1 Proportional Reward 181 -- 8.6.2 Pay-per-last N-shares (PPLNS) Reward 184 -- 8.7 Simulation Results and Discussion 187 -- 8.8 Conclusions and Future Directions 188 -- Acknowledgment 190 -- References 190 -- 9 Permissioned and Permissionless Blockchains 193 /Andrew Miller -- 9.1 Introduction 193 -- 9.2 On Choosing Your Peers Wisely 194 -- 9.3 Committee Election Mechanisms 196 -- 9.4 Privacy in Permissioned and Permissionless Blockchains 199 -- 9.5 Conclusion 201 -- References 202 -- 10 Shocking Blockchain’s Memory with Unconfirmed Transactions: New DDoS Attacks and Countermeasures 205 /Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Kevin Kwiat, and Aziz Mohaisen -- 10.1 Introduction 205 -- 10.2 Related Work 207 -- 10.3 An Overview of Blockchain and Lifecycle 208 -- 10.3.1 DDoS Attack on Mempools 210 -- 10.3.2 Data Collection for Evaluation 210 -- 10.4 Threat Model 211 -- 10.5 Attack Procedure 212 -- 10.5.1 The Distribution Phase 214 -- 10.5.2 The Attack Phase 214 -- 10.5.3 Attack Cost 214 -- 10.6 Countering the Mempool Attack 215 -- 10.6.1 Fee-based Mempool Design 216 -- 10.6.2 Age-based Countermeasures 221 -- 10.7 Experiment and Results 224 -- 10.8 Conclusion 227 -- References 227 -- 11 Preventing Digital Currency Miners from Launching Attacks Against Mining Pools Using a Reputation-based Paradigm 233 /Mehrdad Nojoumian, Arash Golchubian, Laurent Njilla, Kevin Kwiat, and Charles A. Kamhoua. 11.1 Introduction 233 -- 11.2 Preliminaries 234 -- 11.2.1 Digital Currencies: Terminologies and Mechanics 234 -- 11.2.2 Game Theory: Basic Notions and Definitions 235 -- 11.3 Literature Review 236 -- 11.4 Reputation-based Mining Model and Setting 238 -- 11.5 Mining in a Reputation-based Model 240 -- 11.5.1 Prevention of the Re-entry Attack 240 -- 11.5.2 Technical Discussion on Detection Mechanisms 241 -- 11.5.3 Colluding Miner’s Dilemma 243 -- 11.5.4 Repeated Mining Game 244 -- 11.5.5 Colluding Miners’ Preferences 245 -- 11.5.6 Colluding Miners’ Utilities 245 -- 11.6 Evaluation of Our Model Using Game-theoretical Analyses 246 -- 11.7 Concluding Remarks 248 -- Acknowledgment 249 -- References 249 -- Part IV Blockchain Implementation 253 -- 12 Private Blockchain Configurations for Improved IoT Security 255 /Adriaan Larmuseau and Devu Manikantan Shila -- 12.1 Introduction 255 -- 12.2 Blockchain-enabled Gateway 257 -- 12.2.1 Advantages 257 -- 12.2.2 Limitations 258 -- 12.2.3 Private Ethereum Gateways for Access Control 259 -- 12.2.4 Evaluation 262 -- 12.3 Blockchain-enabled Smart End Devices 263 -- 12.3.1 Advantages 263 -- 12.3.2 Limitations 264 -- 12.3.3 Private Hyperledger Blockchain-enabled Smart Sensor Devices 264 -- 12.3.4 Evaluation 269 -- 12.4 Related Work 270 -- 12.5 Conclusion 271 -- References 271 -- 13 Blockchain Evaluation Platform 275 /Peter Foytik and Sachin S. Shetty -- 13.1 Introduction 275 -- 13.1.1 Architecture 276 -- 13.1.2 Distributed Ledger 276 -- 13.1.3 Participating Nodes 277 -- 13.1.4 Communication 277 -- 13.1.5 Consensus 278 -- 13.2 Hyperledger Fabric 279 -- 13.2.1 Node Types 279 -- 13.2.2 Docker 280 -- 13.2.3 Hyperledger Fabric Example Exercise 281 -- 13.2.4 Running the First Network 281 -- 13.2.5 Running the Kafka Network 286 -- 13.3 Measures of Performance 291 -- 13.3.1 Performance Metrics With the Proof-of-Stake Simulation 293 -- 13.3.2 Performance Measures With the Hyperledger Fabric Example 296 -- 13.4 Simple Blockchain Simulation 300. 13.5 Blockchain Simulation Introduction 303 -- 13.5.1 Methodology 304 -- 13.5.2 Simulation Integration With Live Blockchain 304 -- 13.5.3 Simulation Integration With Simulated Blockchain 306 -- 13.5.4 Verification and Validation 306 -- 13.5.5 Example 307 -- 13.6 Conclusion and Future Work 309 -- References 310 -- 14 Summary and Future Work 311 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 14.1 Introduction 311 -- 14.2 Blockchain and Cloud Security 312 -- 14.3 Blockchain and IoT Security 312 -- 14.4 Blockchain Security and Privacy 314 -- 14.5 Experimental Testbed and Performance Evaluation 316 -- 14.6 The Future 316 -- Index 319. |
Record Nr. | UNINA-9910676564003321 |
Hoboken, New Jersey : , : Wiley-IEEE, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|