Internal reflection and ATR spectroscopy [[electronic resource] /] / Milan Milosevic |
Autore | Milosevic Milan <1955-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2012 |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 543/.59 |
Collana | Chemical analysis : a series of monographs on analytical chemistry and its applications |
Soggetto topico |
Internal reflection spectroscopy
Absorption spectra |
ISBN |
1-280-59110-2
9786613620934 1-118-30976-6 1-118-30974-X 1-118-30971-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
INTERNAL REFLECTION AND ATR SPECTROSCOPY; CONTENTS; PREFACE; 1: Introduction to Spectroscopy; 1.1 HISTORY; 1.2 DEFINITION OF TRANSMITTANCE AND REFLECTANCE; 1.3 THE SPECTROSCOPIC EXPERIMENT AND THE SPECTROMETER; 1.4 PROPAGATION OF LIGHT THROUGH A MEDIUM; 1.5 TRANSMITTANCE AND ABSORBANCE; 1.6 S/N IN A SPECTROSCOPIC MEASUREMENT; 2: Harmonic Oscillator Model for Optical Constants; 2.1 HARMONIC OSCILLATOR MODEL FOR POLARIZABILITY; 2.2 CLAUSIUS-MOSSOTTI EQUATION; 2.3 REFRACTIVE INDEX; 2.4 ABSORPTION INDEX AND CONCENTRATION; 3: Propagation of Electromagnetic Energy
3.1 POYNTING VECTOR AND FLOW OF ELECTROMAGNETIC ENERGY3.2 LINEAR MOMENTUM OF LIGHT; 3.3 LIGHT ABSORPTION IN ABSORBING MEDIA; 3.4 LAMBERT LAW AND MOLECULAR CROSS SECTION; 4: Fresnel Equations; 4.1 ELECTROMAGNETIC FIELDS AT THE INTERFACE; 4.2 SNELL'S LAW; 4.3 BOUNDARY CONDITIONS AT THE INTERFACE; 4.4 FRESNEL FORMULAE; 4.5 REFLECTANCE AND TRANSMITANCE OF INTERFACE; 4.6 SNELL'S PAIRS; 4.7 NORMAL INCIDENCE; 4.8 BREWSTER'S ANGLE; 4.9 THE CASE OF THE 45° ANGLE OF INCIDENCE; 4.10 TOTAL INTERNAL REFLECTION; 5: Evanescent Wave; 5.1 EXPONENTIAL DECAY AND PENETRATION DEPTH 5.2 ENERGY FLOW AT A TOTALLY INTERNALLY REFLECTING INTERFACE 5.3 THE EVANESCENT WAVE IN ABSORBING MATERIALS; 6: Electric Fields at a Totally Internally Reflecting Interface; 6.1 EX, EY, AND EZ FOR S-POLARIZED INCIDENT LIGHT; 6.2 EX, EY, AND EZ FOR P-POLARIZED INCIDENT LIGHT; 7: Anatomy of ATR Absorption; 7.1 ATTENUATED TOTAL REFLECTION (ATR) REFLECTANCE FOR S- AND P-POLARIZED BEAM; 7.2 ABSORBANCE TRANSFORM OF ATR SPECTRA; 7.3 WEAK ABSORPTION APPROXIMATION; 7.4 SUPERCRITICAL REFLECTANCE AND ABSORPTION OF EVANESCENT WAVE; 7.5 THE LEAKY INTERFACE MODEL; 8: Effective Thickness 8.1 DEFINITION AND EXPRESSIONS FOR EFFECTIVE THICKNESS 8.2 EFFECTIVE THICKNESS AND PENETRATION DEPTH; 8.3 EFFECTIVE THICKNESS AND ATR SPECTROSCOPY; 8.4 EFFECTIVE THICKNESS FOR STRONG ABSORPTIONS; 9: Internal Reflectance near Critical Angle; 9.1 TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL REFLECTION; 9.2 EFFECTIVE THICKNESS AND REFRACTIVE INDEX OF SAMPLE; 9.3 CRITICAL ANGLE AND REFRACTIVE INDEX OF SAMPLE; 10: Depth Profiling; 10.1 ENERGY ABSORPTION AT DIFFERENT DEPTHS; 10.2 THIN ABSORBING LAYER ON A NONABSORBING SUBSTRATE; 10.3 THIN NONABSORBING FILM ON AN ABSORBING SUBSTRATE 10.4 THIN NONABSORBING FILM ON A THIN ABSORBING FILM ON A NONABSORBING SUBSTRATE11: Multiple Interfaces; 11.1 REFLECTANCE AND TRANSMITTANCE OF A TWO-INTERFACE SYSTEM; 11.2 VERY THIN FILMS; 11.3 INTERFERENCE FRINGES; 11.4 NORMAL INCIDENCE; 11.5 INTERFERENCE FRINGES AND TRANSMISSION SPECTROSCOPY; 11.6 THIN FILMS AND ATR; 11.7 INTERNAL REFLECTION: SUBCRITICAL, SUPERCRITICAL, AND IN BETWEEN; 11.8 UNUSUAL FRINGES; 11.9 PENETRATION DEPTH REVISITED; 11.10 REFLECTANCE AND TRANSMITTANCE OF A MULTIPLE INTERFACE SYSTEM; 12: Metal Optics; 12.1 ELECTROMAGNETIC FIELDS IN METALS; 12.2 PLASMA 12.3 REFLECTANCE OF METAL SURFACES |
Record Nr. | UNINA-9910141267303321 |
Milosevic Milan <1955-> | ||
Hoboken, N.J., : John Wiley & Sons, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Internal reflection and ATR spectroscopy / / Milan Milosevic |
Autore | Milosevic Milan <1955-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2012 |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 543/.59 |
Collana | Chemical analysis : a series of monographs on analytical chemistry and its applications |
Soggetto topico |
Internal reflection spectroscopy
Absorption spectra |
ISBN |
1-280-59110-2
9786613620934 1-118-30976-6 1-118-30974-X 1-118-30971-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
INTERNAL REFLECTION AND ATR SPECTROSCOPY; CONTENTS; PREFACE; 1: Introduction to Spectroscopy; 1.1 HISTORY; 1.2 DEFINITION OF TRANSMITTANCE AND REFLECTANCE; 1.3 THE SPECTROSCOPIC EXPERIMENT AND THE SPECTROMETER; 1.4 PROPAGATION OF LIGHT THROUGH A MEDIUM; 1.5 TRANSMITTANCE AND ABSORBANCE; 1.6 S/N IN A SPECTROSCOPIC MEASUREMENT; 2: Harmonic Oscillator Model for Optical Constants; 2.1 HARMONIC OSCILLATOR MODEL FOR POLARIZABILITY; 2.2 CLAUSIUS-MOSSOTTI EQUATION; 2.3 REFRACTIVE INDEX; 2.4 ABSORPTION INDEX AND CONCENTRATION; 3: Propagation of Electromagnetic Energy
3.1 POYNTING VECTOR AND FLOW OF ELECTROMAGNETIC ENERGY3.2 LINEAR MOMENTUM OF LIGHT; 3.3 LIGHT ABSORPTION IN ABSORBING MEDIA; 3.4 LAMBERT LAW AND MOLECULAR CROSS SECTION; 4: Fresnel Equations; 4.1 ELECTROMAGNETIC FIELDS AT THE INTERFACE; 4.2 SNELL'S LAW; 4.3 BOUNDARY CONDITIONS AT THE INTERFACE; 4.4 FRESNEL FORMULAE; 4.5 REFLECTANCE AND TRANSMITANCE OF INTERFACE; 4.6 SNELL'S PAIRS; 4.7 NORMAL INCIDENCE; 4.8 BREWSTER'S ANGLE; 4.9 THE CASE OF THE 45° ANGLE OF INCIDENCE; 4.10 TOTAL INTERNAL REFLECTION; 5: Evanescent Wave; 5.1 EXPONENTIAL DECAY AND PENETRATION DEPTH 5.2 ENERGY FLOW AT A TOTALLY INTERNALLY REFLECTING INTERFACE 5.3 THE EVANESCENT WAVE IN ABSORBING MATERIALS; 6: Electric Fields at a Totally Internally Reflecting Interface; 6.1 EX, EY, AND EZ FOR S-POLARIZED INCIDENT LIGHT; 6.2 EX, EY, AND EZ FOR P-POLARIZED INCIDENT LIGHT; 7: Anatomy of ATR Absorption; 7.1 ATTENUATED TOTAL REFLECTION (ATR) REFLECTANCE FOR S- AND P-POLARIZED BEAM; 7.2 ABSORBANCE TRANSFORM OF ATR SPECTRA; 7.3 WEAK ABSORPTION APPROXIMATION; 7.4 SUPERCRITICAL REFLECTANCE AND ABSORPTION OF EVANESCENT WAVE; 7.5 THE LEAKY INTERFACE MODEL; 8: Effective Thickness 8.1 DEFINITION AND EXPRESSIONS FOR EFFECTIVE THICKNESS 8.2 EFFECTIVE THICKNESS AND PENETRATION DEPTH; 8.3 EFFECTIVE THICKNESS AND ATR SPECTROSCOPY; 8.4 EFFECTIVE THICKNESS FOR STRONG ABSORPTIONS; 9: Internal Reflectance near Critical Angle; 9.1 TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL REFLECTION; 9.2 EFFECTIVE THICKNESS AND REFRACTIVE INDEX OF SAMPLE; 9.3 CRITICAL ANGLE AND REFRACTIVE INDEX OF SAMPLE; 10: Depth Profiling; 10.1 ENERGY ABSORPTION AT DIFFERENT DEPTHS; 10.2 THIN ABSORBING LAYER ON A NONABSORBING SUBSTRATE; 10.3 THIN NONABSORBING FILM ON AN ABSORBING SUBSTRATE 10.4 THIN NONABSORBING FILM ON A THIN ABSORBING FILM ON A NONABSORBING SUBSTRATE11: Multiple Interfaces; 11.1 REFLECTANCE AND TRANSMITTANCE OF A TWO-INTERFACE SYSTEM; 11.2 VERY THIN FILMS; 11.3 INTERFERENCE FRINGES; 11.4 NORMAL INCIDENCE; 11.5 INTERFERENCE FRINGES AND TRANSMISSION SPECTROSCOPY; 11.6 THIN FILMS AND ATR; 11.7 INTERNAL REFLECTION: SUBCRITICAL, SUPERCRITICAL, AND IN BETWEEN; 11.8 UNUSUAL FRINGES; 11.9 PENETRATION DEPTH REVISITED; 11.10 REFLECTANCE AND TRANSMITTANCE OF A MULTIPLE INTERFACE SYSTEM; 12: Metal Optics; 12.1 ELECTROMAGNETIC FIELDS IN METALS; 12.2 PLASMA 12.3 REFLECTANCE OF METAL SURFACES |
Record Nr. | UNINA-9910828666603321 |
Milosevic Milan <1955-> | ||
Hoboken, N.J., : John Wiley & Sons, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|