2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
| 2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, NJ : , : IEEE, , 2019 |
| Descrizione fisica | 1 online resource (171 pages) : illustrations |
| Disciplina | 681.2 |
| Soggetto topico | Intelligent sensors |
| ISBN | 1-7281-4192-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2019 2nd International Conference of Intelligent Robotic and Control Engineering |
| Record Nr. | UNINA-9910437206703321 |
| Piscataway, NJ : , : IEEE, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
| 2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, NJ : , : IEEE, , 2019 |
| Descrizione fisica | 1 online resource (171 pages) : illustrations |
| Disciplina | 681.2 |
| Soggetto topico | Intelligent sensors |
| ISBN | 1-7281-4192-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2019 2nd International Conference of Intelligent Robotic and Control Engineering |
| Record Nr. | UNISA-996575494503316 |
| Piscataway, NJ : , : IEEE, , 2019 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
2021 6th International Conference on Intelligent Information Technology / / Association for Computing Machinery
| 2021 6th International Conference on Intelligent Information Technology / / Association for Computing Machinery |
| Pubbl/distr/stampa | New York NY : , : Association for Computing Machinery, , 2021 |
| Descrizione fisica | 1 online resource (106 pages) |
| Disciplina | 681.2 |
| Soggetto topico | Intelligent sensors |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910510449303321 |
| New York NY : , : Association for Computing Machinery, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Modern Sensors : Physics, Design, Simulation and Applications
| Advances in Modern Sensors : Physics, Design, Simulation and Applications |
| Autore | Sinha G. R |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2020 |
| Descrizione fisica | 1 online resource (367 pages) |
| Altri autori (Persone) |
PatelBhagwati Charan
GoelNaveen ThakurKavita VyasPrafulla DeshmukhKusumanjali MehtaNeeraj LiJin LiuZilong NHema |
| Collana | IOP Series in Sensors and Sensor Systems Series |
| Soggetto topico |
Intelligent sensors
Wearable technology |
| ISBN |
9780750341141
0750341149 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Editor biography -- G R Sinha -- List of contributors -- Chapter 1 Introduction to sensors -- 1.1 Introduction -- 1.2 Sensor characteristics -- 1.2.1 Transfer function -- 1.2.2 Full-scale input (FSI) -- 1.2.3 Full-scale output (FSO) -- 1.2.4 Accuracy -- 1.2.5 Calibration -- 1.2.6 Hysteresis -- 1.2.7 Non-linearity -- 1.2.8 Resolution -- 1.2.9 Saturation -- 1.2.10 Repeatability -- 1.2.11 Dead band -- 1.2.12 Reliability -- 1.2.13 Output characteristics -- 1.2.14 Impedance -- 1.2.15 Excitation -- 1.2.16 Dynamic characteristics -- 1.2.17 Precision -- 1.2.18 Environmental factors -- 1.2.19 Uncertainty -- 1.2.20 Application characteristics -- 1.3 Types of sensors -- 1.3.1 Temperature sensors -- 1.3.2 Position sensors -- 1.3.3 Light sensors -- 1.3.4 Sound sensor -- 1.3.5 Proximity sensor -- 1.3.6 Accelerometer -- 1.3.7 Infrared sensor -- 1.3.8 Pressure sensor -- 1.3.9 Ultrasonic sensors -- 1.3.10 Touch sensor -- 1.3.11 Humidity sensor -- 1.3.12 Colour sensor -- 1.3.13 Chemical sensor -- 1.3.14 Seismic sensor -- 1.3.15 Magnetic sensor -- 1.4 Comparison of different sensors -- 1.5 Modern sensors -- 1.6 Conclusions -- References -- Chapter 2 Classification and characteristics of sensors -- 2.1 Introduction -- 2.2 Classification -- 2.3 Commonly used sensors and their features -- 2.4 Transfer function -- 2.5 Characteristics of sensors -- 2.6 Sensors should meet the following basic requirements -- 2.7 Factors for choosing sensors -- 2.8 Conclusion -- References -- Chapter 3 Optical sensors: overview, characteristics and applications -- 3.1 Introduction -- 3.2 Optical sensors: fundamentals -- 3.2.1 Modes of operation -- 3.2.2 Light sources for optical sensors -- 3.2.3 Advantages of optical sensors -- 3.3 Optical sensing devices (detectors) -- 3.3.1 Photoemissive cells (photoemitters).
3.3.2 Photoresistor or light dependent resistors -- 3.3.3 Photodiodes -- 3.3.4 Phototransistor -- 3.3.5 Infrared sensors -- 3.3.6 Fiber optic sensor -- References -- Chapter 4 Recent applications of chalcogenide glasses (ChGs) based sensors -- 4.1 ChGs based sensors: a brief introduction -- 4.2 Fabrication and molding of ChGs in the form of different devices for sensing applications -- 4.2.1 Infrared optical fibers -- 4.2.2 Infrared optical lenses -- 4.2.3 Thin film membranes -- 4.3 Description of some principals behind the sensing applications -- 4.3.1 Attenuated total internal reflection -- 4.3.2 Fiber evanescent wave spectroscopy -- 4.3.3 Thermal imaging -- 4.4 Some exclusive examples of sensing applications of ChGs based sensors -- 4.4.1 Application in bio-sensing and food security -- 4.4.2 Early cancer diagnostics -- 4.4.3 Monitoring of pollutants in groundwater -- 4.4.4 Night vision systems for surveillance assignments -- 4.4.5 Monitoring of global warming -- 4.4.6 Other significant applications -- 4.5 Conclusions -- References -- Chapter 5 Advanced dynamic and static calibration methods for optical imaging sensors -- 5.1 Introduction -- 5.2 Principle of camera calibrations -- 5.2.1 Position determination principle using optical cameras -- 5.2.2 Camera calibration principle -- 5.2.3 Camera calibration model -- 5.2.4 Distortion model in camera calibration -- 5.3 Dynamic calibration approaches -- 5.3.1 The principle of the dynamic camera calibration -- 5.3.2 Calibration model used for the dynamic calibration -- 5.3.3 Dynamic calibration with multi-aperture MEMS light lead-in devices -- 5.4 Static calibration principle with mSOL -- 5.4.1 Static calibration general principle -- 5.4.2 Static calibration principle with DOEs -- 5.4.3 Calibration configurations with mSOL -- 5.4.4 Calibration theory. 5.4.5 The position extraction approach of the predefined target images -- 5.4.6 Applied examples -- 5.5 Discussion and future development directions -- 5.6 Conclusion -- References -- Chapter 6 Smart and wearable sensors used in numerous modern applications and their significance -- 6.1 Introduction -- 6.2 Smart sensors properties -- 6.2.1 Self-calibration -- 6.2.2 Reliability or self-health assessment -- 6.2.3 Self-healing -- 6.2.4 Compensated measurements -- 6.2.5 Self-adaptability: exchange accuracy for speed and vice versa -- 6.3 Smart sensors types -- 6.4 Smart sensor applications -- 6.4.1 Smart cities -- 6.4.2 Smart environment -- 6.4.3 Smart factories -- 6.5 Case study: smart home surveillance system using a smart camera -- 6.6 Wearable sensors -- 6.7 Applications of wearable sensors -- 6.7.1 Programmable bio-electric ASIC sensors -- 6.7.2 Diabetes wearable medical device -- 6.7.3 Cancer detecting wearable device -- 6.7.4 Wearable sweat-sensor -- 6.7.5 Wearable peritoneal dialysis device -- 6.7.6 Predicting the progress of Alzheimer's and dementia diseases -- 6.7.7 Monitoring Parkinson's disease -- 6.7.8 Vision-related biosensors -- 6.8 Conclusion -- References -- Chapter 7 Smart stick for the visually impaired -- 7.1 Introduction -- 7.2 Smart blind stick -- 7.3 Hardware description -- 7.3.1 Arduino UNO -- 7.3.2 Ultrasonic sensor -- 7.3.3 Water sensor -- 7.3.4 GPS module -- 7.3.5 LDR-light dependent resistor -- 7.3.6 Alarm unit -- 7.4 Results -- 7.4.1 Ultrasonic sensor -- 7.4.2 Detection of water by water sensor -- 7.4.3 Detection of light by using LDR -- 7.4.4 Location of the stick -- 7.5 Conclusion -- References -- Chapter 8 Smart and wearable sensors -- 8.1 Introduction -- 8.2 Features of smart sensors -- 8.3 Evaluation of smart sensors -- 8.3.1 Third-generation -- 8.3.2 Fourth-generation -- 8.3.3 Fifth-generation. 8.4 Design of a smart sensor -- 8.4.1 Data acquisition -- 8.4.2 Data transfer -- 8.4.3 Data processing -- 8.5 Consequences -- 8.5.1 Advantages of smart sensor -- 8.5.2 Disadvantages -- 8.6 General applications -- 8.7 Wearable sensors -- 8.7.1 Need for wearable sensors -- 8.7.2 Smart sensor as a wearable sensor -- 8.8 Wearable sensor devices -- 8.8.1 Wristwatches architecture and performance -- 8.8.2 Electronic T-Shirt architecture and working principle -- 8.8.3 BP monitoring using PPG -- 8.9 Conclusion -- References -- Chapter 9 Cognitive and biosensors: an overview -- 9.1 Introduction and background -- 9.2 Cognitive sensors -- 9.2.1 Research challenges -- 9.2.2 Application of cognitive sensors -- 9.2.3 Cognitive sensors and machine learning -- 9.2.4 Cognitive sensors and security threats -- 9.3 Biosensors -- 9.3.1 Research challenges -- 9.3.2 Application of biosensors -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter 10 Sensor technologies combined with AI helping in smart transport systems as driverless cars -- 10.1 History of driverless cars using smart sensors -- 10.2 Automation levels -- 10.3 Sensors and other technologies used by manufacturing companies -- 10.4 Design components -- 10.5 Sensor technology -- 10.5.1 GPS -- 10.5.2 LiDAR -- 10.5.3 Cameras -- 10.5.4 Radar sensors -- 10.5.5 Ultrasonic sensors -- 10.6 Challenges and future research -- 10.7 Conclusions -- References -- Chapter 11 Recent advancements in smart and wearable sensors -- 11.1 Introduction -- 11.1.1 Basics of SWSs -- 11.1.2 Working principle of a smart sensor -- 11.2 Types of wearable sensors -- 11.2.1 Optical sensors -- 11.2.2 Physical sensors -- 11.2.3 Chemical sensors -- 11.2.4 Multiplexed sensors -- 11.2.5 Wireless sensors -- 11.3 Challenges in wearable chemical sensors and possible solutions -- 11.3.1 Materials-based challenges with possible solution. 11.3.2 Operational challenges and possible solutions -- 11.4 Conclusion and future direction -- References -- Chapter 12 Design and implementation of a wearable gaze tracking device with near-infrared and visible-light image sensors -- 12.1 Introduction -- 12.2 Proposed wearable gaze tracking design -- 12.2.1 Near-infrared image sensor based wearable eye tracker design [13, 14] -- 12.2.2 Visible-light image sensor based wearable eye tracker design [17-19] -- 12.2.3 Calibration and gaze tracking function for wearable eye tracking device -- 12.3 Experimental results and comparisons -- 12.4 Conclusion and future works -- Acknowledgments -- References -- Chapter 13 Vibration powered wireless sensor networks-harvesting energy from good vibrations -- 13.1 Introduction -- 13.2 literature survey -- 13.2.1 Piezoelectric sensors -- 13.2.2 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation -- 13.2.3 Feasibility of structural monitoring with vibration powered sensors -- 13.2.4 Vibration powered wireless sensor networks -- 13.3 Existing methodology -- 13.3.1 Proposed methodology -- 13.3.2 Comparison of proposed methodology with existing methodology -- 13.3.3 Advantages -- 13.3.4 Disadvantages -- 13.4 Conclusion -- References -- Chapter 14 Comprehensive review on brain-computer interface sensor-based smart home appliances control system -- 14.1 Introduction -- 14.1.1 Motivation and requirement -- 14.2 Background -- 14.2.1 Electroencephalography (EEG) -- 14.2.2 Brain waves -- 14.2.3 EEG artifacts -- 14.2.4 Control signal of BCI -- 14.3 Step involved in BCI-based controlling home appliances system -- 14.3.1 Data acquisition framework -- 14.3.2 Preprocessing and feature extraction -- 14.3.3 Classification results -- 14.4 Controlling methods based on single and multiple appliances -- 14.4.1 Single appliance control. 14.4.2 Multiple appliance control. |
| Record Nr. | UNINA-9911009381703321 |
Sinha G. R
|
||
| Bristol : , : Institute of Physics Publishing, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
| BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017 |
| Pubbl/distr/stampa | New York : , : IEEE, , 2017 |
| Descrizione fisica | 1 online resource (241 pages) |
| Soggetto topico |
Smart materials
Intelligent sensors Bioengineering |
| ISBN | 1-5386-0706-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996279689903316 |
| New York : , : IEEE, , 2017 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
| BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017 |
| Pubbl/distr/stampa | New York : , : IEEE, , 2017 |
| Descrizione fisica | 1 online resource (241 pages) |
| Soggetto topico |
Smart materials
Intelligent sensors Bioengineering |
| ISBN | 1-5386-0706-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910228957503321 |
| New York : , : IEEE, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computing in civil engineering 2017 : sensing, simulation, and visualization : selected papers frm the ASCE International Workshop on Computing in Civil Engineering 2017, June 25-27, 2017, Seattle, Washington / / sponsored by Computing and Information Technology Division of the American Society of Civil Engineers ; edited by Ken-Yu Lin, Nora El-Gohary, Pingbo Tang
| Computing in civil engineering 2017 : sensing, simulation, and visualization : selected papers frm the ASCE International Workshop on Computing in Civil Engineering 2017, June 25-27, 2017, Seattle, Washington / / sponsored by Computing and Information Technology Division of the American Society of Civil Engineers ; edited by Ken-Yu Lin, Nora El-Gohary, Pingbo Tang |
| Pubbl/distr/stampa | Reston, Virginia : , : ASCE, , 2017 |
| Descrizione fisica | 1 online resource (428 pages) |
| Disciplina | 681.2 |
| Soggetto topico |
Intelligent sensors
Visualization |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-7844-8083-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910466544603321 |
| Reston, Virginia : , : ASCE, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Essentials of machine olfaction and taste / / Takamichi Nakamoto
| Essentials of machine olfaction and taste / / Takamichi Nakamoto |
| Pubbl/distr/stampa | Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016 |
| Descrizione fisica | 1 online resource (343 p.) |
| Disciplina | 681/.754 |
| Soggetto topico |
Chemical detectors
Intelligent sensors Olfactory sensors Smell - Simulation methods Taste - Simulation methods |
| ISBN |
1-5231-1069-4
1-118-76851-5 1-118-76850-7 |
| Classificazione | TEC008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
2.3.1.2 Transduction of Odor Signals2.3.1.3 Molecular Biology of Olfaction; 2.3.2 Taste; 2.3.2.1 Anatomy of Taste; 2.3.2.2 Transduction of Taste Signals; 2.3.2.3 Molecular Biology of Taste; 2.4 Cell-Based Sensors and Receptor-Based Sensors ; 2.4.1 Tissue-Based Sensors ; 2.4.2 Cell-Based Sensors ; 2.4.3 Receptor-Based Sensors ; 2.4.3.1 Production of Odorant Receptors; 2.4.3.2 Immobilization of Odorant Receptors; 2.4.3.3 Measurement from Odorant Receptors; 2.4.4 Summary of the Biosensors; 2.5 Future Prospects; References; Chapter 3 Large-Scale Chemical Sensor Arrays for Machine Olfaction
3.1 Introduction3.2 Overview of Artificial Olfactory Systems; 3.3 Common Sensor Technologies Employed in Artificial Olfactory Systems; 3.3.1 Metal-Oxide Gas Sensors ; 3.3.2 Piezoelectric Sensors; 3.3.3 Conducting Polymer Sensors; 3.4 Typical Application of "Electronic Nose" Technologies; 3.5 A Comparison between Artificial and the Biological Olfaction Systems; 3.6 A Large-Scale Sensor Array ; 3.6.1 Conducting Polymers; 3.6.2 Sensor Interrogation Strategy; 3.6.3 Sensor Substrate; 3.7 Characterization of the Large-Scale Sensor Array 3.7.1 Pure Analyte Study: Classification and Quantification Capability3.7.2 Binary Mixture Study: Segmentation and Background Suppression Capability; 3.7.3 Polymer Classes: Testing Broad and Overlapping Sensitivity, High Level of Redundancy; 3.7.4 System Robustness and Long-Term Stability ; 3.8 Conclusions; Acknowledgment; References; Chapter 4 Taste Sensor: Electronic Tongue with Global Selectivity; 4.1 Introduction; 4.2 Electronic Tongues; 4.3 Taste Sensor; 4.3.1 Introduction; 4.3.2 Principle; 4.3.3 Response Mechanism; 4.3.4 Measurement Procedure; 4.3.5 Sensor Design Techniques 4.3.6 Basic Characteristics4.3.6.1 Threshold; 4.3.6.2 Global Selectivity; 4.3.6.3 High Correlation with Human Sensory Scores; 4.3.6.4 Definition of Taste Information; 4.3.6.5 Detection of Interactions between Taste Substances; 4.3.7 Sample Preparation; 4.3.8 Analysis; 4.4 Taste Substances Adsorbed on the Membrane; 4.5 Miniaturized Taste Sensor; 4.6 Pungent Sensor; 4.7 Application to Foods and Beverages; 4.7.1 Introduction; 4.7.2 Beer; 4.7.3 Coffee; 4.7.4 Meat; 4.7.5 Combinatorial Optimization Technique for Ingredients and Qualities Using a GA; 4.7.5.1 Introduction; 4.7.5.2 GA 4.7.5.3 Constrained Nonlinear Optimization |
| Record Nr. | UNINA-9910136882403321 |
| Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Essentials of machine olfaction and taste / / Takamichi Nakamoto
| Essentials of machine olfaction and taste / / Takamichi Nakamoto |
| Pubbl/distr/stampa | Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016 |
| Descrizione fisica | 1 online resource (343 p.) |
| Disciplina | 681/.754 |
| Soggetto topico |
Chemical detectors
Intelligent sensors Olfactory sensors Smell - Simulation methods Taste - Simulation methods |
| ISBN |
1-5231-1069-4
1-118-76851-5 1-118-76850-7 |
| Classificazione | TEC008000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
2.3.1.2 Transduction of Odor Signals2.3.1.3 Molecular Biology of Olfaction; 2.3.2 Taste; 2.3.2.1 Anatomy of Taste; 2.3.2.2 Transduction of Taste Signals; 2.3.2.3 Molecular Biology of Taste; 2.4 Cell-Based Sensors and Receptor-Based Sensors ; 2.4.1 Tissue-Based Sensors ; 2.4.2 Cell-Based Sensors ; 2.4.3 Receptor-Based Sensors ; 2.4.3.1 Production of Odorant Receptors; 2.4.3.2 Immobilization of Odorant Receptors; 2.4.3.3 Measurement from Odorant Receptors; 2.4.4 Summary of the Biosensors; 2.5 Future Prospects; References; Chapter 3 Large-Scale Chemical Sensor Arrays for Machine Olfaction
3.1 Introduction3.2 Overview of Artificial Olfactory Systems; 3.3 Common Sensor Technologies Employed in Artificial Olfactory Systems; 3.3.1 Metal-Oxide Gas Sensors ; 3.3.2 Piezoelectric Sensors; 3.3.3 Conducting Polymer Sensors; 3.4 Typical Application of "Electronic Nose" Technologies; 3.5 A Comparison between Artificial and the Biological Olfaction Systems; 3.6 A Large-Scale Sensor Array ; 3.6.1 Conducting Polymers; 3.6.2 Sensor Interrogation Strategy; 3.6.3 Sensor Substrate; 3.7 Characterization of the Large-Scale Sensor Array 3.7.1 Pure Analyte Study: Classification and Quantification Capability3.7.2 Binary Mixture Study: Segmentation and Background Suppression Capability; 3.7.3 Polymer Classes: Testing Broad and Overlapping Sensitivity, High Level of Redundancy; 3.7.4 System Robustness and Long-Term Stability ; 3.8 Conclusions; Acknowledgment; References; Chapter 4 Taste Sensor: Electronic Tongue with Global Selectivity; 4.1 Introduction; 4.2 Electronic Tongues; 4.3 Taste Sensor; 4.3.1 Introduction; 4.3.2 Principle; 4.3.3 Response Mechanism; 4.3.4 Measurement Procedure; 4.3.5 Sensor Design Techniques 4.3.6 Basic Characteristics4.3.6.1 Threshold; 4.3.6.2 Global Selectivity; 4.3.6.3 High Correlation with Human Sensory Scores; 4.3.6.4 Definition of Taste Information; 4.3.6.5 Detection of Interactions between Taste Substances; 4.3.7 Sample Preparation; 4.3.8 Analysis; 4.4 Taste Substances Adsorbed on the Membrane; 4.5 Miniaturized Taste Sensor; 4.6 Pungent Sensor; 4.7 Application to Foods and Beverages; 4.7.1 Introduction; 4.7.2 Beer; 4.7.3 Coffee; 4.7.4 Meat; 4.7.5 Combinatorial Optimization Technique for Ingredients and Qualities Using a GA; 4.7.5.1 Introduction; 4.7.5.2 GA 4.7.5.3 Constrained Nonlinear Optimization |
| Record Nr. | UNINA-9910809876103321 |
| Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Guidelines for the registration of two coordinate frames / / Geraldine S. Cheok, Marek Franaszek
| Guidelines for the registration of two coordinate frames / / Geraldine S. Cheok, Marek Franaszek |
| Autore | Cheok Geraldine S |
| Pubbl/distr/stampa | Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2016 |
| Descrizione fisica | 1 online resource (13 pages) : illustrations (chiefly color) |
| Altri autori (Persone) |
CheokGeraldine S
FranaszekMarek |
| Collana | NIST technical note |
| Soggetto topico |
Intelligent sensors
Structural frames |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910711381203321 |
Cheok Geraldine S
|
||
| Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||