top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2019
Descrizione fisica 1 online resource (171 pages) : illustrations
Disciplina 681.2
Soggetto topico Intelligent sensors
ISBN 1-7281-4192-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2019 2nd International Conference of Intelligent Robotic and Control Engineering
Record Nr. UNINA-9910437206703321
Piscataway, NJ : , : IEEE, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2019
Descrizione fisica 1 online resource (171 pages) : illustrations
Disciplina 681.2
Soggetto topico Intelligent sensors
ISBN 1-7281-4192-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2019 2nd International Conference of Intelligent Robotic and Control Engineering
Record Nr. UNISA-996575494503316
Piscataway, NJ : , : IEEE, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2021 6th International Conference on Intelligent Information Technology / / Association for Computing Machinery
2021 6th International Conference on Intelligent Information Technology / / Association for Computing Machinery
Pubbl/distr/stampa New York NY : , : Association for Computing Machinery, , 2021
Descrizione fisica 1 online resource (106 pages)
Disciplina 681.2
Soggetto topico Intelligent sensors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910510449303321
New York NY : , : Association for Computing Machinery, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Modern Sensors : Physics, Design, Simulation and Applications
Advances in Modern Sensors : Physics, Design, Simulation and Applications
Autore Sinha G. R
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2020
Descrizione fisica 1 online resource (367 pages)
Altri autori (Persone) PatelBhagwati Charan
GoelNaveen
ThakurKavita
VyasPrafulla
DeshmukhKusumanjali
MehtaNeeraj
LiJin
LiuZilong
NHema
Collana IOP Series in Sensors and Sensor Systems Series
Soggetto topico Intelligent sensors
Wearable technology
ISBN 9780750341141
0750341149
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Editor biography -- G R Sinha -- List of contributors -- Chapter 1 Introduction to sensors -- 1.1 Introduction -- 1.2 Sensor characteristics -- 1.2.1 Transfer function -- 1.2.2 Full-scale input (FSI) -- 1.2.3 Full-scale output (FSO) -- 1.2.4 Accuracy -- 1.2.5 Calibration -- 1.2.6 Hysteresis -- 1.2.7 Non-linearity -- 1.2.8 Resolution -- 1.2.9 Saturation -- 1.2.10 Repeatability -- 1.2.11 Dead band -- 1.2.12 Reliability -- 1.2.13 Output characteristics -- 1.2.14 Impedance -- 1.2.15 Excitation -- 1.2.16 Dynamic characteristics -- 1.2.17 Precision -- 1.2.18 Environmental factors -- 1.2.19 Uncertainty -- 1.2.20 Application characteristics -- 1.3 Types of sensors -- 1.3.1 Temperature sensors -- 1.3.2 Position sensors -- 1.3.3 Light sensors -- 1.3.4 Sound sensor -- 1.3.5 Proximity sensor -- 1.3.6 Accelerometer -- 1.3.7 Infrared sensor -- 1.3.8 Pressure sensor -- 1.3.9 Ultrasonic sensors -- 1.3.10 Touch sensor -- 1.3.11 Humidity sensor -- 1.3.12 Colour sensor -- 1.3.13 Chemical sensor -- 1.3.14 Seismic sensor -- 1.3.15 Magnetic sensor -- 1.4 Comparison of different sensors -- 1.5 Modern sensors -- 1.6 Conclusions -- References -- Chapter 2 Classification and characteristics of sensors -- 2.1 Introduction -- 2.2 Classification -- 2.3 Commonly used sensors and their features -- 2.4 Transfer function -- 2.5 Characteristics of sensors -- 2.6 Sensors should meet the following basic requirements -- 2.7 Factors for choosing sensors -- 2.8 Conclusion -- References -- Chapter 3 Optical sensors: overview, characteristics and applications -- 3.1 Introduction -- 3.2 Optical sensors: fundamentals -- 3.2.1 Modes of operation -- 3.2.2 Light sources for optical sensors -- 3.2.3 Advantages of optical sensors -- 3.3 Optical sensing devices (detectors) -- 3.3.1 Photoemissive cells (photoemitters).
3.3.2 Photoresistor or light dependent resistors -- 3.3.3 Photodiodes -- 3.3.4 Phototransistor -- 3.3.5 Infrared sensors -- 3.3.6 Fiber optic sensor -- References -- Chapter 4 Recent applications of chalcogenide glasses (ChGs) based sensors -- 4.1 ChGs based sensors: a brief introduction -- 4.2 Fabrication and molding of ChGs in the form of different devices for sensing applications -- 4.2.1 Infrared optical fibers -- 4.2.2 Infrared optical lenses -- 4.2.3 Thin film membranes -- 4.3 Description of some principals behind the sensing applications -- 4.3.1 Attenuated total internal reflection -- 4.3.2 Fiber evanescent wave spectroscopy -- 4.3.3 Thermal imaging -- 4.4 Some exclusive examples of sensing applications of ChGs based sensors -- 4.4.1 Application in bio-sensing and food security -- 4.4.2 Early cancer diagnostics -- 4.4.3 Monitoring of pollutants in groundwater -- 4.4.4 Night vision systems for surveillance assignments -- 4.4.5 Monitoring of global warming -- 4.4.6 Other significant applications -- 4.5 Conclusions -- References -- Chapter 5 Advanced dynamic and static calibration methods for optical imaging sensors -- 5.1 Introduction -- 5.2 Principle of camera calibrations -- 5.2.1 Position determination principle using optical cameras -- 5.2.2 Camera calibration principle -- 5.2.3 Camera calibration model -- 5.2.4 Distortion model in camera calibration -- 5.3 Dynamic calibration approaches -- 5.3.1 The principle of the dynamic camera calibration -- 5.3.2 Calibration model used for the dynamic calibration -- 5.3.3 Dynamic calibration with multi-aperture MEMS light lead-in devices -- 5.4 Static calibration principle with mSOL -- 5.4.1 Static calibration general principle -- 5.4.2 Static calibration principle with DOEs -- 5.4.3 Calibration configurations with mSOL -- 5.4.4 Calibration theory.
5.4.5 The position extraction approach of the predefined target images -- 5.4.6 Applied examples -- 5.5 Discussion and future development directions -- 5.6 Conclusion -- References -- Chapter 6 Smart and wearable sensors used in numerous modern applications and their significance -- 6.1 Introduction -- 6.2 Smart sensors properties -- 6.2.1 Self-calibration -- 6.2.2 Reliability or self-health assessment -- 6.2.3 Self-healing -- 6.2.4 Compensated measurements -- 6.2.5 Self-adaptability: exchange accuracy for speed and vice versa -- 6.3 Smart sensors types -- 6.4 Smart sensor applications -- 6.4.1 Smart cities -- 6.4.2 Smart environment -- 6.4.3 Smart factories -- 6.5 Case study: smart home surveillance system using a smart camera -- 6.6 Wearable sensors -- 6.7 Applications of wearable sensors -- 6.7.1 Programmable bio-electric ASIC sensors -- 6.7.2 Diabetes wearable medical device -- 6.7.3 Cancer detecting wearable device -- 6.7.4 Wearable sweat-sensor -- 6.7.5 Wearable peritoneal dialysis device -- 6.7.6 Predicting the progress of Alzheimer's and dementia diseases -- 6.7.7 Monitoring Parkinson's disease -- 6.7.8 Vision-related biosensors -- 6.8 Conclusion -- References -- Chapter 7 Smart stick for the visually impaired -- 7.1 Introduction -- 7.2 Smart blind stick -- 7.3 Hardware description -- 7.3.1 Arduino UNO -- 7.3.2 Ultrasonic sensor -- 7.3.3 Water sensor -- 7.3.4 GPS module -- 7.3.5 LDR-light dependent resistor -- 7.3.6 Alarm unit -- 7.4 Results -- 7.4.1 Ultrasonic sensor -- 7.4.2 Detection of water by water sensor -- 7.4.3 Detection of light by using LDR -- 7.4.4 Location of the stick -- 7.5 Conclusion -- References -- Chapter 8 Smart and wearable sensors -- 8.1 Introduction -- 8.2 Features of smart sensors -- 8.3 Evaluation of smart sensors -- 8.3.1 Third-generation -- 8.3.2 Fourth-generation -- 8.3.3 Fifth-generation.
8.4 Design of a smart sensor -- 8.4.1 Data acquisition -- 8.4.2 Data transfer -- 8.4.3 Data processing -- 8.5 Consequences -- 8.5.1 Advantages of smart sensor -- 8.5.2 Disadvantages -- 8.6 General applications -- 8.7 Wearable sensors -- 8.7.1 Need for wearable sensors -- 8.7.2 Smart sensor as a wearable sensor -- 8.8 Wearable sensor devices -- 8.8.1 Wristwatches architecture and performance -- 8.8.2 Electronic T-Shirt architecture and working principle -- 8.8.3 BP monitoring using PPG -- 8.9 Conclusion -- References -- Chapter 9 Cognitive and biosensors: an overview -- 9.1 Introduction and background -- 9.2 Cognitive sensors -- 9.2.1 Research challenges -- 9.2.2 Application of cognitive sensors -- 9.2.3 Cognitive sensors and machine learning -- 9.2.4 Cognitive sensors and security threats -- 9.3 Biosensors -- 9.3.1 Research challenges -- 9.3.2 Application of biosensors -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter 10 Sensor technologies combined with AI helping in smart transport systems as driverless cars -- 10.1 History of driverless cars using smart sensors -- 10.2 Automation levels -- 10.3 Sensors and other technologies used by manufacturing companies -- 10.4 Design components -- 10.5 Sensor technology -- 10.5.1 GPS -- 10.5.2 LiDAR -- 10.5.3 Cameras -- 10.5.4 Radar sensors -- 10.5.5 Ultrasonic sensors -- 10.6 Challenges and future research -- 10.7 Conclusions -- References -- Chapter 11 Recent advancements in smart and wearable sensors -- 11.1 Introduction -- 11.1.1 Basics of SWSs -- 11.1.2 Working principle of a smart sensor -- 11.2 Types of wearable sensors -- 11.2.1 Optical sensors -- 11.2.2 Physical sensors -- 11.2.3 Chemical sensors -- 11.2.4 Multiplexed sensors -- 11.2.5 Wireless sensors -- 11.3 Challenges in wearable chemical sensors and possible solutions -- 11.3.1 Materials-based challenges with possible solution.
11.3.2 Operational challenges and possible solutions -- 11.4 Conclusion and future direction -- References -- Chapter 12 Design and implementation of a wearable gaze tracking device with near-infrared and visible-light image sensors -- 12.1 Introduction -- 12.2 Proposed wearable gaze tracking design -- 12.2.1 Near-infrared image sensor based wearable eye tracker design [13, 14] -- 12.2.2 Visible-light image sensor based wearable eye tracker design [17-19] -- 12.2.3 Calibration and gaze tracking function for wearable eye tracking device -- 12.3 Experimental results and comparisons -- 12.4 Conclusion and future works -- Acknowledgments -- References -- Chapter 13 Vibration powered wireless sensor networks-harvesting energy from good vibrations -- 13.1 Introduction -- 13.2 literature survey -- 13.2.1 Piezoelectric sensors -- 13.2.2 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation -- 13.2.3 Feasibility of structural monitoring with vibration powered sensors -- 13.2.4 Vibration powered wireless sensor networks -- 13.3 Existing methodology -- 13.3.1 Proposed methodology -- 13.3.2 Comparison of proposed methodology with existing methodology -- 13.3.3 Advantages -- 13.3.4 Disadvantages -- 13.4 Conclusion -- References -- Chapter 14 Comprehensive review on brain-computer interface sensor-based smart home appliances control system -- 14.1 Introduction -- 14.1.1 Motivation and requirement -- 14.2 Background -- 14.2.1 Electroencephalography (EEG) -- 14.2.2 Brain waves -- 14.2.3 EEG artifacts -- 14.2.4 Control signal of BCI -- 14.3 Step involved in BCI-based controlling home appliances system -- 14.3.1 Data acquisition framework -- 14.3.2 Preprocessing and feature extraction -- 14.3.3 Classification results -- 14.4 Controlling methods based on single and multiple appliances -- 14.4.1 Single appliance control.
14.4.2 Multiple appliance control.
Record Nr. UNINA-9911009381703321
Sinha G. R  
Bristol : , : Institute of Physics Publishing, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
Pubbl/distr/stampa New York : , : IEEE, , 2017
Descrizione fisica 1 online resource (241 pages)
Soggetto topico Smart materials
Intelligent sensors
Bioengineering
ISBN 1-5386-0706-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996279689903316
New York : , : IEEE, , 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
BioSMART : 2017 2nd International Conference on Bio-engineering for Smart Technologies : August 30, 2017-September 1, 2017
Pubbl/distr/stampa New York : , : IEEE, , 2017
Descrizione fisica 1 online resource (241 pages)
Soggetto topico Smart materials
Intelligent sensors
Bioengineering
ISBN 1-5386-0706-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910228957503321
New York : , : IEEE, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computing in civil engineering 2017 : sensing, simulation, and visualization : selected papers frm the ASCE International Workshop on Computing in Civil Engineering 2017, June 25-27, 2017, Seattle, Washington / / sponsored by Computing and Information Technology Division of the American Society of Civil Engineers ; edited by Ken-Yu Lin, Nora El-Gohary, Pingbo Tang
Computing in civil engineering 2017 : sensing, simulation, and visualization : selected papers frm the ASCE International Workshop on Computing in Civil Engineering 2017, June 25-27, 2017, Seattle, Washington / / sponsored by Computing and Information Technology Division of the American Society of Civil Engineers ; edited by Ken-Yu Lin, Nora El-Gohary, Pingbo Tang
Pubbl/distr/stampa Reston, Virginia : , : ASCE, , 2017
Descrizione fisica 1 online resource (428 pages)
Disciplina 681.2
Soggetto topico Intelligent sensors
Visualization
Soggetto genere / forma Electronic books.
ISBN 0-7844-8083-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910466544603321
Reston, Virginia : , : ASCE, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Essentials of machine olfaction and taste / / Takamichi Nakamoto
Essentials of machine olfaction and taste / / Takamichi Nakamoto
Pubbl/distr/stampa Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016
Descrizione fisica 1 online resource (343 p.)
Disciplina 681/.754
Soggetto topico Chemical detectors
Intelligent sensors
Olfactory sensors
Smell - Simulation methods
Taste - Simulation methods
ISBN 1-5231-1069-4
1-118-76851-5
1-118-76850-7
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.3.1.2 Transduction of Odor Signals2.3.1.3 Molecular Biology of Olfaction; 2.3.2 Taste; 2.3.2.1 Anatomy of Taste; 2.3.2.2 Transduction of Taste Signals; 2.3.2.3 Molecular Biology of Taste; 2.4 Cell-Based Sensors and Receptor-Based Sensors ; 2.4.1 Tissue-Based Sensors ; 2.4.2 Cell-Based Sensors ; 2.4.3 Receptor-Based Sensors ; 2.4.3.1 Production of Odorant Receptors; 2.4.3.2 Immobilization of Odorant Receptors; 2.4.3.3 Measurement from Odorant Receptors; 2.4.4 Summary of the Biosensors; 2.5 Future Prospects; References; Chapter 3 Large-Scale Chemical Sensor Arrays for Machine Olfaction
3.1 Introduction3.2 Overview of Artificial Olfactory Systems; 3.3 Common Sensor Technologies Employed in Artificial Olfactory Systems; 3.3.1 Metal-Oxide Gas Sensors ; 3.3.2 Piezoelectric Sensors; 3.3.3 Conducting Polymer Sensors; 3.4 Typical Application of "Electronic Nose" Technologies; 3.5 A Comparison between Artificial and the Biological Olfaction Systems; 3.6 A Large-Scale Sensor Array ; 3.6.1 Conducting Polymers; 3.6.2 Sensor Interrogation Strategy; 3.6.3 Sensor Substrate; 3.7 Characterization of the Large-Scale Sensor Array
3.7.1 Pure Analyte Study: Classification and Quantification Capability3.7.2 Binary Mixture Study: Segmentation and Background Suppression Capability; 3.7.3 Polymer Classes: Testing Broad and Overlapping Sensitivity, High Level of Redundancy; 3.7.4 System Robustness and Long-Term Stability ; 3.8 Conclusions; Acknowledgment; References; Chapter 4 Taste Sensor: Electronic Tongue with Global Selectivity; 4.1 Introduction; 4.2 Electronic Tongues; 4.3 Taste Sensor; 4.3.1 Introduction; 4.3.2 Principle; 4.3.3 Response Mechanism; 4.3.4 Measurement Procedure; 4.3.5 Sensor Design Techniques
4.3.6 Basic Characteristics4.3.6.1 Threshold; 4.3.6.2 Global Selectivity; 4.3.6.3 High Correlation with Human Sensory Scores; 4.3.6.4 Definition of Taste Information; 4.3.6.5 Detection of Interactions between Taste Substances; 4.3.7 Sample Preparation; 4.3.8 Analysis; 4.4 Taste Substances Adsorbed on the Membrane; 4.5 Miniaturized Taste Sensor; 4.6 Pungent Sensor; 4.7 Application to Foods and Beverages; 4.7.1 Introduction; 4.7.2 Beer; 4.7.3 Coffee; 4.7.4 Meat; 4.7.5 Combinatorial Optimization Technique for Ingredients and Qualities Using a GA; 4.7.5.1 Introduction; 4.7.5.2 GA
4.7.5.3 Constrained Nonlinear Optimization
Record Nr. UNINA-9910136882403321
Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Essentials of machine olfaction and taste / / Takamichi Nakamoto
Essentials of machine olfaction and taste / / Takamichi Nakamoto
Pubbl/distr/stampa Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016
Descrizione fisica 1 online resource (343 p.)
Disciplina 681/.754
Soggetto topico Chemical detectors
Intelligent sensors
Olfactory sensors
Smell - Simulation methods
Taste - Simulation methods
ISBN 1-5231-1069-4
1-118-76851-5
1-118-76850-7
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.3.1.2 Transduction of Odor Signals2.3.1.3 Molecular Biology of Olfaction; 2.3.2 Taste; 2.3.2.1 Anatomy of Taste; 2.3.2.2 Transduction of Taste Signals; 2.3.2.3 Molecular Biology of Taste; 2.4 Cell-Based Sensors and Receptor-Based Sensors ; 2.4.1 Tissue-Based Sensors ; 2.4.2 Cell-Based Sensors ; 2.4.3 Receptor-Based Sensors ; 2.4.3.1 Production of Odorant Receptors; 2.4.3.2 Immobilization of Odorant Receptors; 2.4.3.3 Measurement from Odorant Receptors; 2.4.4 Summary of the Biosensors; 2.5 Future Prospects; References; Chapter 3 Large-Scale Chemical Sensor Arrays for Machine Olfaction
3.1 Introduction3.2 Overview of Artificial Olfactory Systems; 3.3 Common Sensor Technologies Employed in Artificial Olfactory Systems; 3.3.1 Metal-Oxide Gas Sensors ; 3.3.2 Piezoelectric Sensors; 3.3.3 Conducting Polymer Sensors; 3.4 Typical Application of "Electronic Nose" Technologies; 3.5 A Comparison between Artificial and the Biological Olfaction Systems; 3.6 A Large-Scale Sensor Array ; 3.6.1 Conducting Polymers; 3.6.2 Sensor Interrogation Strategy; 3.6.3 Sensor Substrate; 3.7 Characterization of the Large-Scale Sensor Array
3.7.1 Pure Analyte Study: Classification and Quantification Capability3.7.2 Binary Mixture Study: Segmentation and Background Suppression Capability; 3.7.3 Polymer Classes: Testing Broad and Overlapping Sensitivity, High Level of Redundancy; 3.7.4 System Robustness and Long-Term Stability ; 3.8 Conclusions; Acknowledgment; References; Chapter 4 Taste Sensor: Electronic Tongue with Global Selectivity; 4.1 Introduction; 4.2 Electronic Tongues; 4.3 Taste Sensor; 4.3.1 Introduction; 4.3.2 Principle; 4.3.3 Response Mechanism; 4.3.4 Measurement Procedure; 4.3.5 Sensor Design Techniques
4.3.6 Basic Characteristics4.3.6.1 Threshold; 4.3.6.2 Global Selectivity; 4.3.6.3 High Correlation with Human Sensory Scores; 4.3.6.4 Definition of Taste Information; 4.3.6.5 Detection of Interactions between Taste Substances; 4.3.7 Sample Preparation; 4.3.8 Analysis; 4.4 Taste Substances Adsorbed on the Membrane; 4.5 Miniaturized Taste Sensor; 4.6 Pungent Sensor; 4.7 Application to Foods and Beverages; 4.7.1 Introduction; 4.7.2 Beer; 4.7.3 Coffee; 4.7.4 Meat; 4.7.5 Combinatorial Optimization Technique for Ingredients and Qualities Using a GA; 4.7.5.1 Introduction; 4.7.5.2 GA
4.7.5.3 Constrained Nonlinear Optimization
Record Nr. UNINA-9910809876103321
Solaris South Tower, Singapore : , : John Wiley & Sons Incorporated, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Guidelines for the registration of two coordinate frames / / Geraldine S. Cheok, Marek Franaszek
Guidelines for the registration of two coordinate frames / / Geraldine S. Cheok, Marek Franaszek
Autore Cheok Geraldine S
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2016
Descrizione fisica 1 online resource (13 pages) : illustrations (chiefly color)
Altri autori (Persone) CheokGeraldine S
FranaszekMarek
Collana NIST technical note
Soggetto topico Intelligent sensors
Structural frames
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711381203321
Cheok Geraldine S  
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui