top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 227 p. 68 illus., 50 illus. in color.)
Disciplina 016.391
Soggetto topico Intelligent agents (Computer software) - Security measures
Artificial intelligence
Computer security
ISBN 9783030556921
3-030-55692-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses -- 1. Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning -- 2. Security of Distributed Machine Learning:A Game-Theoretic Approach to Design Secure DSVM -- 3. Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games -- Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks -- 4. Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model -- 5. Overview of GANs for Image Synthesis and Detection Methods -- 6. Robust Machine Learning using Diversity and Blockchain -- Part III: Human Machine Interactions and Roles in Automated Cyber Defenses -- 7. Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents -- 8. Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks -- 9. Homology as an Adversarial Attack Indicator -- Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs).
Record Nr. UNINA-9910484456103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 227 p. 68 illus., 50 illus. in color.)
Disciplina 016.391
Soggetto topico Intelligent agents (Computer software) - Security measures
Artificial intelligence
Computer security
ISBN 9783030556921
3-030-55692-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses -- 1. Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning -- 2. Security of Distributed Machine Learning:A Game-Theoretic Approach to Design Secure DSVM -- 3. Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games -- Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks -- 4. Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model -- 5. Overview of GANs for Image Synthesis and Detection Methods -- 6. Robust Machine Learning using Diversity and Blockchain -- Part III: Human Machine Interactions and Roles in Automated Cyber Defenses -- 7. Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents -- 8. Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks -- 9. Homology as an Adversarial Attack Indicator -- Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs).
Record Nr. UNISA-996464400503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
MAS&S '05 proceedings : the 2005 IEEE 2nd Symposium on Multi-Agent Security & Survivability; August 30-31, 2005; Drexel University, Philadelphia, PA
MAS&S '05 proceedings : the 2005 IEEE 2nd Symposium on Multi-Agent Security & Survivability; August 30-31, 2005; Drexel University, Philadelphia, PA
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2005
Soggetto topico Electronic data processing - Distributed processing - Security measures
Intelligent agents (Computer software) - Security measures
Electronic data processing
Engineering & Applied Sciences
Computer Science
ISBN 1-5090-9746-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996199735403316
[Place of publication not identified], : IEEE, 2005
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
MAS&S '05 proceedings : the 2005 IEEE 2nd Symposium on Multi-Agent Security & Survivability; August 30-31, 2005; Drexel University, Philadelphia, PA
MAS&S '05 proceedings : the 2005 IEEE 2nd Symposium on Multi-Agent Security & Survivability; August 30-31, 2005; Drexel University, Philadelphia, PA
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2005
Soggetto topico Electronic data processing - Distributed processing - Security measures
Intelligent agents (Computer software) - Security measures
Electronic data processing
Engineering & Applied Sciences
Computer Science
ISBN 9781509097463
1509097465
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910142348503321
[Place of publication not identified], : IEEE, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui