High-speed VLSI interconnections / / Ashok K. Goel |
Autore | Goel Ashok K. <1953-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, : IEEE Press, c2007 |
Descrizione fisica | 1 online resource (433 p.) |
Disciplina | 621.39/5 |
Collana | Wiley series in microwave and optical engineering |
Soggetto topico |
Very high speed integrated circuits - Mathematical models
Very high speed integrated circuits - Defects - Mathematical models Integrated circuits - Very large scale integration - Computer simulation Semiconductors - Junctions |
ISBN |
1-281-09414-5
9786611094140 0-470-16597-9 0-470-16596-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- 1. Preliminary Concepts and More -- 1.1 Interconnections for VLSI Applications -- 1.1.1 Metallic Interconnections - Multilevel, Multilayer and Multipath Configurations -- 1.1.2 Optical Interconnections -- 1.1.3 Superconducting Interconnections -- 1.2 Copper Interconnections -- 1.2.1 Advantages of Copper Interconnections -- 1.2.2 Challenges Posed by Copper Interconnections -- 1.2.3 Fabrication Processes for Copper Interconnections -- 1.2.4 Damascene Processing of Copper Interconnections -- 1.3 Method of Images -- 1.4 Method of Moments -- 1.5 Even and Odd Mode Capacitances -- 1.5.1 Two Coupled Conductors -- 1.5.2 Three Coupled Conductors -- 1.6 Transmission Line Equations -- 1.7 Miller's Theorem -- 1.8 Inverse Laplace Transformation -- 1.9 A Resistive Interconnection as a Ladder Network -- 1.9.1 Open Circuit Interconnection -- 1.9.2 Short Circuited Interconnection -- 1.9.3 Application of the Ladder Approximation to a Multipath Interconnection -- 1.10 Propagation Modes in a Microstrip Interconnection -- 1.11 Slow-Wave Mode Propagation -- 1.11.1 Quasi-TEM Analysis -- 1.11.2 Comparison with Experimental Results -- 1.12 Propagation Delays -- Exercises -- References -- 2. Parasitic Resistances, Capacitances and Inductances -- 2.1 Parasitic Resistances - General Considerations -- 2.2 Parasitic Capacitances - General Considerations -- 2.2.1 Parallel Plate Capacitance -- 2.2.2 Fringing Capacitances -- 2.2.3 Coupling Capacitances -- 2.3 Parasitic Inductances - General Considerations -- 2.3.1 Self and Mutual Inductances -- 2.3.2 Partial Inductances -- 2.3.3 Methods for Inductance Extraction -- 2.3.4 Effect of Inductances on Interconnection Delays -- 2.4 Approximate Formulas for Capacitances -- 2.4.1 Single Line on a Ground Plane -- 2.4.2 Two Lines on a Ground Plane -- 2.4.3 Three Lines on a Ground Plane -- 2.4.4 Single Plate with Finite Dimensions on a Ground Plane -- 2.5 The Green's Function Method - Using Method of Images.
2.5.1 Green's Function Matrix for Interconnections Printed on the Substrate -- 2.5.2 Green's Function Matrix for Interconnections Embedded in the Substrate -- 2.5.3 Application of the Method of Moments -- 2.5.4 Even and Odd Mode Capacitances -- 2.5.5 Ground and Coupling Capacitances -- 2.5.6 The Program IPCSGV -- 2.5.7 Parametric Dependence of Interconnection Capacitances -- 2.6 The Green's Function Method - Fourier Integral Approach -- 2.6.1 Green's Function for Multilevel Interconnections -- 2.6.2 Multiconductor Interconnection Capacitances -- 2.6.3 Piecewise Linear Charge Distribution Function -- 2.6.4 Calculation of Interconnection Capacitances -- 2.7 The Network Analogue Method -- 2.7.1 Representation of Subregions by Network Analogues -- 2.7.2 Diagonalized System for Single Level Interconnections -- 2.7.3 Diagonalized System for Multilevel Interconnections -- 2.7.4 Interconnection Capacitances and Inductances -- 2.7.5 The Program "ICIMPGV́ -- 2.7.6 Parametric Dependence of Interconnection Capacitances -- 2.7.7 Parametric Dependence of Interconnection Inductances -- 2.8 Simplified Formulas for Interconnection Capacitances and Inductances on Silicon and GaAs Substrates -- 2.8.1 Line Capacitances and Inductances -- 2.8.2 Coupling Capacitances and Inductances -- 2.9 Inductance Extraction Using FastHenry -- 2.9.1 The Program "FastHenry" -- 2.9.2 Extraction Results Using FastHenry -- 2.10 Copper Interconnections - Resistance Modeling -- 2.10.1 Effect of Surface/Interface Scattering on the Interconnection Resistivity -- 2.10.2 Effect of Diffusion Barrier on the Interconnection Resistivity -- 2.11 Electrode Capacitances in a GaAs MESFET - An Application of the Program IPCSGV -- 2.11.1 Ground and Coupling Capacitances -- 2.11.2 The Program "EPCSGḾ -- 2.11.3 Dependence on MESFET Dimensions -- 2.11.4 Comparison with Internal MESFET Capacitances -- Exercises -- References -- 3. Interconnection Delays -- 3.1 Metal-Insulator-Semiconductor Microstrip Line Model of an Interconnection. 3.1.1 The Model -- 3.1.2 Simulation Results -- 3.2 Transmission Line Analysis of Single Level Interconnections -- 3.2.1 The Model -- 3.2.2 The Program "PDSIGV́ -- 3.2.3 Dependence on Interconnection Parameters -- 3.3 Transmission Line Analysis of Parallel Multilevel Interconnections -- 3.3.1 The Model -- 3.3.2 Numerical Simulation Results -- 3.4 Analysis of Crossing Interconnections -- 3.4.1 Simplified Analysis of Crossing Interconnections -- 3.4.2 Comprehensive Analysis of Crossing Interconnections -- 3.4.3 The Program "SPBIGV́ -- 3.4.4 Simulation Results Using SPBIGV3.5Parallel Interconnections Modeled as Multiple Coupled Microstrips -- 3.5.1 The Model -- 3.5.2 Simulation Results -- 3.6 Modeling of Lossy Parallel and Crossing Interconnections as Coupled Lumped Distributed Systems -- 3.6.1 The Model -- 3.6.2 Simulation Results -- 3.7 Very High Frequency Losses in a Microstrip Interconnection -- 3.7.1 The Model -- 3.7.2 Simulation Results -- 3.7.3 Interconnection Delays With the High-Frequency Effects -- 3.8 Compact Expressions for Interconnection Delays -- 3.8.1 The RC Interconnection Model -- 3.8.2 The RLC Interconnection Model - A Single Semi-Infinite Line -- 3.8.3 The RLC Interconnection Model - A Single Finite Line -- 3.8.4 Single RLC Interconnection - Delay Time -- 3.8.5 Two and Three Coupled RLC Interconnections - Delay Times -- 3.9 Interconnection Delays in Multilayer Integrated Circuits -- 3.9.1 The Simplified Model -- 3.9.2 Simulation Results and Discussion -- 3.10 Active Interconnections -- 3.10.1 Interconnection Delay Model -- 3.10.2 Active Interconnection Driven by Minimum Size Inverters -- 3.10.3 Active Interconnection Driven by Optimum Size Inverters -- 3.10.4 Active Interconnection Driven by Cascaded Inverters -- 3.10.5 Dependence of Propagation Time on the Interconnection Driving Mechanism -- Exercises -- References -- 4. Crosstalk Analysis -- 4.1Lumped Capacitance Approximation -- 4.2Coupled Multiconductor MIS Microstrip Line Model of Single Level Interconnections. 4.2.1 The Model -- 4.2.2 Numerical Simulations -- 4.2.3 Crosstalk Reduction -- 4.3 Frequency Domain Modal Analysis of Single Level Interconnections -- 4.3.1 The General Technique -- 4.3.2 Two-Line System -- 4.3.3 Three-Line System -- 4.3.4 Four-Line System -- 4.3.5 Simulation Results -- 4.4 Transmission Line Analysis of Parallel Multilevel Interconnections -- 4.4.1 The Model -- 4.4.2 The Program "DCMPVÍ -- 4.4.3 Numerical Simulations Using DCMPVI -- 4.5 Analysis of Crossing Interconnections -- 4.5.1 Effect of Crossing Interconnections -- 4.5.2 Comprehensive Analysis of Crossing Interconnections -- 4.6 Compact Expressions for Crosstalk Analysis -- 4.6.1 Distributed RC Model for Two Coupled Interconnections -- 4.6.2 Distributed RLC Model for Two Coupled Interconnections -- 4.6.3 Distributed RLC Model for Three Coupled Interconnections -- 4.7 Multiconductor Buses in GaAs High-Speed Logic Circuits -- 4.7.1 The Model -- 4.7.2 Lossless MBUS with Cyclic Boundary Conditions -- 4.7.3 Simulation Results -- Exercises -- References -- 5. Electromigration-Induced Failure Analysis -- 5.1 Electromigration in VLSI Interconnection Metallizations - An Overview -- 5.1.1 Problems Caused by Electromigration -- 5.1.2 Electromigration Mechanism and Factors -- 5.1.3 Electromigration Under Pulsed-DC and AC Conditions -- 5.1.4 Testing and Monitoring of Electromigration -- 5.1.5 General Guidelines for Testing Electromigration -- 5.1.6 Reduction of Electromigration -- 5.2 Models of IC Reliability -- 5.2.1 Arrhenius Model -- 5.2.2 Mil-Hdbk-217D Model -- 5.2.3 Series Model -- 5.2.4 Series-Parallel Model -- 5.3 Modeling of Electromigration Due to Repetitive Pulsed Currents -- 5.3.1 Modeling of Physical Processes -- 5.3.2 First-Order Model Development -- 5.3.3 Modeling Results for DC Currents -- 5.3.4 Modeling Results for Pulsed Currents -- 5.4 Electromigration in the Copper Interconnections -- 5.4.1 Electromigration Under DC Conditions -- 5.4.2 Electromigration Under Pulsed DC Condition. 5.4.3 Electromigration Under Bipolar AC Conditions -- 5.5 Failure Analysis of VLSI Interconnection Components -- 5.5.1 Reduction of Components into Straight Segments -- 5.5.2 Calculation of MTF and Lognormal Standard Deviation -- 5.5.3 The Program "EMVIĆ -- 5.5.4 Simulation Results Using EMVIC -- 5.6 Computer-Aided Failure Analysis -- 5.6.1 "RELIANT́ for Reliability of VLSI Interconnections -- 5.6.2 "SPIDEŔ for Checking Current Density and Voltage Drops in the Interconnection Metallizations -- Exercises -- References -- 6. Future Interconnections -- 6.1 Optical Interconnections -- 6.1.1 Advantages of Optical Interconnections -- 6.1.2 Systems Issues and Challenges -- 6.1.3 Material Processing Issues and Challenges -- 6.1.4 Design Issues and Challenges -- 6.2 Transmission Line Models of Lossy Waveguide Interconnections -- 6.2.1 Lossy Waveguide with Single Propagating Wave -- 6.2.2 Equivalent Circuits for Waveguide Drivers and Loads -- 6.2.3 Lossy Waveguide in an Inhomogenous Medium -- 6.3 Superconducting Interconnections -- 6.3.1 Advantages of Superconducting Interconnections -- 6.3.2 Propagation Characteristics of Superconducting Interconnections -- 6.3.3 Comparison with Normal Metal Interconnections -- 6.4 Nanotechnology Circuit Interconnections - Potential Technologies -- 6.4.1 Silicon Nanowires and Metallic Interconnections -- 6.4.2 Nanotube Interconnections -- 6.4.3 Quantum Cell Based Wireless Interconnections -- 6.5 Nanotube Integrated Circuits -- 6.5.1 Nanotube Interconnections and Vias -- 6.5.2 Comparison of Nanotube and Copper Interconnections -- 6.5.3 Nanotubes for High Frequency Applications -- Exercises -- References -- CD-ROM -- Appendix 2.1: Listing of the Program "IPCSGV́ for Calculating the Parasitic Capacitances for Single Level Interconnections on GaAs-Based VLSI Using the Green's Function Method -- Appendix 2.2: Listing of the Program "ICIMPGV́ for Calculating the Parasitic Capacitances and Inductances for Multilevel Interconnections on GaAs-Based VLSI Using the Network Analogue Method. Appendix 2.3: Listing of the Program "EPCSGḾ for Calculating the Electrode Parasitic Capacitances in a Single-Gate GaAs MESFET -- Appendix 3.1: Listing of the Program "PDSIGV́ for Calculating the Propagation Delays in the Single Level Interconnections on GaAs-Based VLSI -- Appendix 3.2: Listing of the Program "IPDMSR" for Calculating the Propagation delays in an Interconnection Driven by Minimum Size Repeaters -- Appendix 3.3: Listing of the Program "IPDOSR" for Calculating the Propagation delays in an Interconnection Driven by Optimum Size Repeaters -- Appendix 3.4: Listing of the Program "IPDCR" for Calculating the Propagation delays in an Interconnection Driven by Cascaded Repeaters -- Appendix 4.1: Listing of the Program "DCMPVÍ for Delay and Crosstalk Analysis of Multilevel Parallel VLSI Interconnections -- Appendix 4.2: Listing of the Program "SPBIGV́ for Signal Propagation Analysis of Bilevel Crossing Interconnections on GaAs-Based VLSI -- Appendix 5.1: Listing of the Program "EMVIĆ for Electromigration-Induced Failure Analysis of VLSI Interconnection Components -- Index. |
Record Nr. | UNINA-9910144576103321 |
Goel Ashok K. <1953-> | ||
Hoboken, N.J., : Wiley-Interscience, : IEEE Press, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mosfet modeling for VLSI simulation [[electronic resource] ] : theory and practice / / Narain Arora |
Autore | Arora N (Narain), <1943-> |
Pubbl/distr/stampa | Singapore, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (633 p.) |
Disciplina | 621.395 |
Collana | International series on advances in solid state electronics and technology |
Soggetto topico |
Metal oxide semiconductor field-effect transistors
Integrated circuits - Very large scale integration Integrated circuits - Very large scale integration - Computer simulation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-12088-X
9786611120887 981-270-758-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword; Preface; Contents; List of Symbols; Acronyms; 1 Overview; 2 Review of Basic Semiconductor and pn Junction Theory; 3 MOS Transistor Structure and Operation; 4 MOS Capacitor; 5 Threshold Voltage; 6 MOSFET DC Model; 7 Dynamic Model; 8 Modeling Hot-Carrier Effects; 9 Data Acquisition and Model Parameter Measurements; 10 Model Parameter Extraction Using Optimization Method; 11 SPICE Diode and MOSFET Models and Their Parameters; 12 Statistical Modeling and Worst-case Design Parameters; Appendix A. Important Properties of Silicon, Silicon Dioxide and Silicon Nitride at 300K
Appendix B. Some Important Physical Constants at 300 KAppendix C. Unit Conversion Factors; Appendix D. Magnitude Prefixes; Appendix E. Methods of Calculating s from the Implicit Eq. (6.23) or (6.30); Appendix F. Charge Based MOSFET Intrinsic Capacitances; Appendix G. Linear Regression; Appendix H. Basic Statistical and Probability Theory; Appendix I. List of Widely Used Statistical Package Programs; 862-X1-missing.pdf; Subject Index |
Record Nr. | UNINA-9910450689003321 |
Arora N (Narain), <1943-> | ||
Singapore, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mosfet modeling for VLSI simulation [[electronic resource] ] : theory and practice / / Narain Arora |
Autore | Arora N (Narain), <1943-> |
Pubbl/distr/stampa | Singapore, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (633 p.) |
Disciplina | 621.395 |
Collana | International series on advances in solid state electronics and technology |
Soggetto topico |
Metal oxide semiconductor field-effect transistors
Integrated circuits - Very large scale integration Integrated circuits - Very large scale integration - Computer simulation |
ISBN |
1-281-12088-X
9786611120887 981-270-758-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword; Preface; Contents; List of Symbols; Acronyms; 1 Overview; 2 Review of Basic Semiconductor and pn Junction Theory; 3 MOS Transistor Structure and Operation; 4 MOS Capacitor; 5 Threshold Voltage; 6 MOSFET DC Model; 7 Dynamic Model; 8 Modeling Hot-Carrier Effects; 9 Data Acquisition and Model Parameter Measurements; 10 Model Parameter Extraction Using Optimization Method; 11 SPICE Diode and MOSFET Models and Their Parameters; 12 Statistical Modeling and Worst-case Design Parameters; Appendix A. Important Properties of Silicon, Silicon Dioxide and Silicon Nitride at 300K
Appendix B. Some Important Physical Constants at 300 KAppendix C. Unit Conversion Factors; Appendix D. Magnitude Prefixes; Appendix E. Methods of Calculating s from the Implicit Eq. (6.23) or (6.30); Appendix F. Charge Based MOSFET Intrinsic Capacitances; Appendix G. Linear Regression; Appendix H. Basic Statistical and Probability Theory; Appendix I. List of Widely Used Statistical Package Programs; 862-X1-missing.pdf; Subject Index |
Record Nr. | UNINA-9910784046703321 |
Arora N (Narain), <1943-> | ||
Singapore, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|