top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Agritech : innovative agriculture using microwaves and plasmas : thermal and non-thermal processing / / edited by Satoshi Horikoshi [and three others]
Agritech : innovative agriculture using microwaves and plasmas : thermal and non-thermal processing / / edited by Satoshi Horikoshi [and three others]
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 016.016
Soggetto topico Agricultural innovations
Innovacions agrícoles
Soggetto genere / forma Llibres electrònics
ISBN 981-16-3890-X
981-16-3891-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743377903321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosensors in agriculture : recent trends and future perspectives / / Ramesh Namdeo Pudake, Utkarsh Jain, Chittaranjan Kole, editors
Biosensors in agriculture : recent trends and future perspectives / / Ramesh Namdeo Pudake, Utkarsh Jain, Chittaranjan Kole, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XV, 493 p. 83 illus., 72 illus. in color.)
Disciplina 631.3
Collana Concepts and strategies in plant sciences
Soggetto topico Agricultural instruments
Agricultural innovations
Biosensors
Innovacions agrícoles
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66165-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Recent trends, prospects, and challenges of nanobiosensors in agriculture -- Nanostructured platforms integrated to biosensors: Recent applications in agriculture. Advances in nanotechnology for bio-sensing in agriculture and food -- Nanomaterial based gas sensor for agriculture sector -- Volatile organic compounds (VOCs) sensors for stress management in crops -- Current trends of plasmonic nanosensors use in agriculture -- Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: What has been done and what we need to do? -- New trends in biosensors for pesticide detection -- Application of biosensor for the identification of various pathogens and pests mitigating against the agricultural production: recent advances -- Gold nanoparticles-based point-of-care colorimetric diagnostic for plant diseases -- Advancements in biosensors for fungal pathogen detection in plants -- Journey of Agricultural sensors – From conventional to ultra-modern -- PART II: Biosensors in food science, Advances in biosensors based on electrospun micro/nanomaterials for food quality control and safety -- Current trend of electrochemical sensing for mytoxins -- Biosensor for fruit quality monitoring -- Lateral flow assays for food authentication -- Nanobiosensors in agriculture and foods: a scientometric review -- PART III: Biosensors in animal and fishery Sciences, Biosensors: Modern tools for disease diagnosis and animal health monitoring -- Nano-biosensing devices detecting biomarkers of communicable and non-communicable diseases of animals -- Recent advances in biosensor development for poultry industry -- Smart aquaculture: Integration of sensors, biosensors, and artificial intelligence -- Biosensor as potential tool for on-site detection of insect pathogens.
Record Nr. UNINA-9910483400003321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information and communication technologies for agriculture theme II : data / / edited by Dionysis D. Bochtis [and four others]
Information and communication technologies for agriculture theme II : data / / edited by Dionysis D. Bochtis [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (296 pages)
Disciplina 630.2085
Collana Springer Optimization and Its Applications
Soggetto topico Agricultural informatics
Enginyeria agronòmica
Innovacions agrícoles
Internet de les coses
Aplicacions industrials
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-84148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I: Data Technologies -- You Got Data Now What: Building the Right Solution for the Problem -- 1 Introduction -- 2 Sensors and Their Readings -- 3 Networks of Sensors -- 3.1 In-Field Crop Production -- 3.2 Intensive Crop Production -- 3.3 Intensive Animal Production -- 4 Using Machine Learning -- 5 Remaining Challenges and Opportunities -- References -- Data Fusion and Its Applications in Agriculture -- 1 Introduction -- 2 Data Fusion -- 2.1 Introduction -- 2.2 The ``Whys´´ and ``Wherefores´´ of Information Fusion -- 2.3 Information Fusion: Methods, Techniques, and Algorithms -- 2.4 Models of Data Fusion -- Architectures and Performance Aspects -- Data Alignment and Fusion of Attributes -- 2.5 Applications of Information Fusion in Agriculture -- Remote Sensing Image Preprocessing -- Restoration and Denoising -- Pixel-based Classification -- Spectral Feature Classification -- Classification with Spatial Information -- Target Recognition -- Scene Understanding -- 2.6 Data Mining and Artificial Intelligence in Agriculture -- Yield Prediction -- Disease Detection -- Weed Detection -- Species Recognition -- 3 Conclusions and Future Challenges -- References -- Machine Learning Technology and Its Current Implementation in Agriculture -- 1 Introduction -- 2 Machine Learning Versus Conventional Programming -- 3 Fundamental Features of Machine Learning -- 4 Types of Machine Learning Methods -- 4.1 Supervised Learning -- Regression -- Classification -- 4.2 Unsupervised Learning -- Clustering -- Dimensionality Reduction -- Association -- 4.3 Reinforcement Learning -- Classification -- Control -- 4.4 Recommender Systems (Active Learning) -- Content-based -- Collaborative Filtering -- 5 Families of Machine Learning Algorithms -- 5.1 Regression -- 5.2 Regularization -- 5.3 Bayesian -- 5.4 Instance-based -- 5.5 Decision Tree.
5.6 Ensemble -- 5.7 Clustering -- 5.8 Dimensionality Reduction -- 5.9 Association Rule -- 5.10 Artificial Neural Networks -- 5.11 Deep Neural Networks -- 6 Machine Learning in Agriculture -- 6.1 Yield Prediction -- 6.2 Crop Disease Detection -- 6.3 Weed Detection -- 6.4 Quality Assessment -- 7 Summary of the Basic Aspects of the Reviewed Studies -- 8 Conclusions -- References -- Part II: Applications -- Application Possibilities of IoT-based Management Systems in Agriculture -- 1 Introduction -- 1.1 Data Acquisition and Management in Agriculture -- 2 Methodology -- 3 Progression and Evaluation of the System -- 3.1 The Main Characteristics Based on the Literature -- 3.2 Determining the Possibilities from a Practical Standpoint -- Data Acquisition Systems -- Data Management Methods and Applications -- Data Utilization -- 4 Discussion -- 5 Conclusions -- References -- Plant Species Detection Using Image Processing and Deep Learning: A Mobile-Based Application -- 1 Introduction -- 2 Background Research -- 2.1 Deep Learning -- 3 Methodology -- 3.1 Dataset and Data Preparation -- Background Removal -- Data Augmentation -- 4 Software Development and Analysis -- 5 Detailed Design and Software Implementation -- 5.1 Developing Convolutional Neural Network -- 5.2 Online Classification System App -- 6 Testing and Evaluation -- 7 Discussion and Future Work -- 8 Conclusions -- References -- Computer Vision-based Detection and Tracking in the Olive Sorting Pipeline -- 1 Introduction -- 1.1 Industrial Sorters -- 2 Problem Description -- 2.1 Related Work -- 3 The Proposed Olive Separation Approach -- 3.1 Image Binarization -- 3.2 Distance Transform -- 3.3 Watershed Transform -- 3.4 Centroid Extraction -- 3.5 Multiple Object Tracking -- 4 The Unscented Kalman Filter -- 4.1 Prediction Phase of the UKF -- 4.2 Update Phase of the UKF.
5 The Kuhn-Munkres (Hungarian) Algorithm -- 6 Results -- 6.1 Sample Collection -- 6.2 Simulation Design -- 6.3 Results Using Kalman Filtering -- 7 Evaluation of the Results -- 8 Conclusions -- References -- Integrating Spatial with Qualitative Data to Monitor Land Use Intensity: Evidence from Arable Land - Animal Husbandry Systems -- 1 Introduction -- 1.1 Land Use Intensity and Farming Systems -- 1.2 Land Use/Land Cover (LULC) Extraction -- 2 Methodology -- 2.1 Study Area -- 2.2 Materials and Methods -- Timeline of Changes -- Remote Sensing Data -- 2.3 Participatory Workshop -- 3 Results and Discussion -- 3.1 Image Processing -- 3.2 Land Cover Type Extraction and Change Detection -- 3.3 Land Conversions -- 3.4 Results from Qualitative Methods -- 3.5 Comparison and Synthesis of Results -- 3.6 Farming Systems and Land Use Intensity -- 4 Conclusion: Ways Forward in Integrating Qualitative Data in Land Use Intensity -- References -- Air drill Seeder Distributor Head Evaluation: A Comparison between Laboratory Tests and Computational Fluid Dynamics Simulatio... -- 1 Introduction -- 2 Materials and Methods -- 2.1 Tested Model Description -- 2.2 Description of Distributor Head´s Test Bench -- 2.3 Experiment Design -- 2.4 Numerical Simulations -- Air-Seeds Mixture Flow -- Air Flow -- Particles Trajectory -- Discrete Phase Model Setup -- 3 Results -- 3.1 Experimental Results -- 3.2 Numerical Results -- 3.3 Validation of the Numerical Model -- 4 Conclusions and Perspectives -- References -- Part III: Value Chain -- Data-Based Agricultural Business Continuity Management Policies -- 1 Introduction -- 2 Motivation -- 2.1 Business Intelligence Tools as Business Continuity Solutions in the Modern Era -- 2.2 Business Continuity and Big Data Challenges in the Agricultural Domain -- 2.3 Research Steps -- 3 Tools and Methods -- 3.1 Formulation of Datasets.
3.2 Business Intelligence Multidimensional Data Models - Preliminary Concepts -- 3.3 Business Process Modelling Notation (BPMN) for Supporting Business Decisions Based on Multidimensional Data -- 3.4 A Robust Machine Learning Agricultural Business Continuity Classifier -- 4 Results -- 4.1 The Multidimensional Data Models for Supporting Agricultural Business Continuity Management Decisions -- Model 1: The Criticality Levels Multidimensional Model -- Model 2: The Risks/Hazards Multidimensional Model -- 4.2 Machine Learning Predictive Analytics Based on the Proposed Multidimensional Schemas -- Data Preprocessing -- Risk Exposure Classification Based on Decision Tree Induction -- Boosting the Risk Exposure classifier´s Predictive Power with the 10-Fold Cross-Validation and the Random Forest Techniques -- 5 Discussion -- 6 Conclusions -- References -- Soybean Price Trend Forecast Using Deep Learning Techniques Based on Prices and Text Sentiments -- 1 Introduction -- 2 Related Work -- 2.1 Price Prediction of Agricultural Commodities -- 2.2 Deep Learning for Price Trend Prediction -- 2.3 Deep Learning for Text Sentiment Analysis -- 3 Methodology -- 4 Results -- 4.1 Models Considering Only Prices -- 4.2 Models Considering Only Text Sentiments -- 4.3 Ensemble Model Considering Prices and Text Sentiments -- 5 Discussion -- 5.1 Benefits of Deep Learning for Agricultural Price Prediction -- 5.2 Adaptation and Uses for Other Products -- 6 Conclusions -- References -- Use of Unsupervised Machine Learning for Agricultural Supply Chain Data Labeling -- 1 Introduction -- 2 Unsupervised Machine Learning in Agriculture -- 3 Methodology -- 4 Results -- 5 Discussion -- 5.1 Training Time for Each Model -- 5.2 Implementation Difficulties -- 5.3 Benefits for SC Traceability -- 5.4 Adaptation to Other SCs -- 6 Conclusions -- References.
Record Nr. UNISA-996466419403316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Information and communication technologies for agriculture theme II : data / / edited by Dionysis D. Bochtis [and four others]
Information and communication technologies for agriculture theme II : data / / edited by Dionysis D. Bochtis [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (296 pages)
Disciplina 630.2085
Collana Springer Optimization and Its Applications
Soggetto topico Agricultural informatics
Enginyeria agronòmica
Innovacions agrícoles
Internet de les coses
Aplicacions industrials
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-84148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I: Data Technologies -- You Got Data Now What: Building the Right Solution for the Problem -- 1 Introduction -- 2 Sensors and Their Readings -- 3 Networks of Sensors -- 3.1 In-Field Crop Production -- 3.2 Intensive Crop Production -- 3.3 Intensive Animal Production -- 4 Using Machine Learning -- 5 Remaining Challenges and Opportunities -- References -- Data Fusion and Its Applications in Agriculture -- 1 Introduction -- 2 Data Fusion -- 2.1 Introduction -- 2.2 The ``Whys´´ and ``Wherefores´´ of Information Fusion -- 2.3 Information Fusion: Methods, Techniques, and Algorithms -- 2.4 Models of Data Fusion -- Architectures and Performance Aspects -- Data Alignment and Fusion of Attributes -- 2.5 Applications of Information Fusion in Agriculture -- Remote Sensing Image Preprocessing -- Restoration and Denoising -- Pixel-based Classification -- Spectral Feature Classification -- Classification with Spatial Information -- Target Recognition -- Scene Understanding -- 2.6 Data Mining and Artificial Intelligence in Agriculture -- Yield Prediction -- Disease Detection -- Weed Detection -- Species Recognition -- 3 Conclusions and Future Challenges -- References -- Machine Learning Technology and Its Current Implementation in Agriculture -- 1 Introduction -- 2 Machine Learning Versus Conventional Programming -- 3 Fundamental Features of Machine Learning -- 4 Types of Machine Learning Methods -- 4.1 Supervised Learning -- Regression -- Classification -- 4.2 Unsupervised Learning -- Clustering -- Dimensionality Reduction -- Association -- 4.3 Reinforcement Learning -- Classification -- Control -- 4.4 Recommender Systems (Active Learning) -- Content-based -- Collaborative Filtering -- 5 Families of Machine Learning Algorithms -- 5.1 Regression -- 5.2 Regularization -- 5.3 Bayesian -- 5.4 Instance-based -- 5.5 Decision Tree.
5.6 Ensemble -- 5.7 Clustering -- 5.8 Dimensionality Reduction -- 5.9 Association Rule -- 5.10 Artificial Neural Networks -- 5.11 Deep Neural Networks -- 6 Machine Learning in Agriculture -- 6.1 Yield Prediction -- 6.2 Crop Disease Detection -- 6.3 Weed Detection -- 6.4 Quality Assessment -- 7 Summary of the Basic Aspects of the Reviewed Studies -- 8 Conclusions -- References -- Part II: Applications -- Application Possibilities of IoT-based Management Systems in Agriculture -- 1 Introduction -- 1.1 Data Acquisition and Management in Agriculture -- 2 Methodology -- 3 Progression and Evaluation of the System -- 3.1 The Main Characteristics Based on the Literature -- 3.2 Determining the Possibilities from a Practical Standpoint -- Data Acquisition Systems -- Data Management Methods and Applications -- Data Utilization -- 4 Discussion -- 5 Conclusions -- References -- Plant Species Detection Using Image Processing and Deep Learning: A Mobile-Based Application -- 1 Introduction -- 2 Background Research -- 2.1 Deep Learning -- 3 Methodology -- 3.1 Dataset and Data Preparation -- Background Removal -- Data Augmentation -- 4 Software Development and Analysis -- 5 Detailed Design and Software Implementation -- 5.1 Developing Convolutional Neural Network -- 5.2 Online Classification System App -- 6 Testing and Evaluation -- 7 Discussion and Future Work -- 8 Conclusions -- References -- Computer Vision-based Detection and Tracking in the Olive Sorting Pipeline -- 1 Introduction -- 1.1 Industrial Sorters -- 2 Problem Description -- 2.1 Related Work -- 3 The Proposed Olive Separation Approach -- 3.1 Image Binarization -- 3.2 Distance Transform -- 3.3 Watershed Transform -- 3.4 Centroid Extraction -- 3.5 Multiple Object Tracking -- 4 The Unscented Kalman Filter -- 4.1 Prediction Phase of the UKF -- 4.2 Update Phase of the UKF.
5 The Kuhn-Munkres (Hungarian) Algorithm -- 6 Results -- 6.1 Sample Collection -- 6.2 Simulation Design -- 6.3 Results Using Kalman Filtering -- 7 Evaluation of the Results -- 8 Conclusions -- References -- Integrating Spatial with Qualitative Data to Monitor Land Use Intensity: Evidence from Arable Land - Animal Husbandry Systems -- 1 Introduction -- 1.1 Land Use Intensity and Farming Systems -- 1.2 Land Use/Land Cover (LULC) Extraction -- 2 Methodology -- 2.1 Study Area -- 2.2 Materials and Methods -- Timeline of Changes -- Remote Sensing Data -- 2.3 Participatory Workshop -- 3 Results and Discussion -- 3.1 Image Processing -- 3.2 Land Cover Type Extraction and Change Detection -- 3.3 Land Conversions -- 3.4 Results from Qualitative Methods -- 3.5 Comparison and Synthesis of Results -- 3.6 Farming Systems and Land Use Intensity -- 4 Conclusion: Ways Forward in Integrating Qualitative Data in Land Use Intensity -- References -- Air drill Seeder Distributor Head Evaluation: A Comparison between Laboratory Tests and Computational Fluid Dynamics Simulatio... -- 1 Introduction -- 2 Materials and Methods -- 2.1 Tested Model Description -- 2.2 Description of Distributor Head´s Test Bench -- 2.3 Experiment Design -- 2.4 Numerical Simulations -- Air-Seeds Mixture Flow -- Air Flow -- Particles Trajectory -- Discrete Phase Model Setup -- 3 Results -- 3.1 Experimental Results -- 3.2 Numerical Results -- 3.3 Validation of the Numerical Model -- 4 Conclusions and Perspectives -- References -- Part III: Value Chain -- Data-Based Agricultural Business Continuity Management Policies -- 1 Introduction -- 2 Motivation -- 2.1 Business Intelligence Tools as Business Continuity Solutions in the Modern Era -- 2.2 Business Continuity and Big Data Challenges in the Agricultural Domain -- 2.3 Research Steps -- 3 Tools and Methods -- 3.1 Formulation of Datasets.
3.2 Business Intelligence Multidimensional Data Models - Preliminary Concepts -- 3.3 Business Process Modelling Notation (BPMN) for Supporting Business Decisions Based on Multidimensional Data -- 3.4 A Robust Machine Learning Agricultural Business Continuity Classifier -- 4 Results -- 4.1 The Multidimensional Data Models for Supporting Agricultural Business Continuity Management Decisions -- Model 1: The Criticality Levels Multidimensional Model -- Model 2: The Risks/Hazards Multidimensional Model -- 4.2 Machine Learning Predictive Analytics Based on the Proposed Multidimensional Schemas -- Data Preprocessing -- Risk Exposure Classification Based on Decision Tree Induction -- Boosting the Risk Exposure classifier´s Predictive Power with the 10-Fold Cross-Validation and the Random Forest Techniques -- 5 Discussion -- 6 Conclusions -- References -- Soybean Price Trend Forecast Using Deep Learning Techniques Based on Prices and Text Sentiments -- 1 Introduction -- 2 Related Work -- 2.1 Price Prediction of Agricultural Commodities -- 2.2 Deep Learning for Price Trend Prediction -- 2.3 Deep Learning for Text Sentiment Analysis -- 3 Methodology -- 4 Results -- 4.1 Models Considering Only Prices -- 4.2 Models Considering Only Text Sentiments -- 4.3 Ensemble Model Considering Prices and Text Sentiments -- 5 Discussion -- 5.1 Benefits of Deep Learning for Agricultural Price Prediction -- 5.2 Adaptation and Uses for Other Products -- 6 Conclusions -- References -- Use of Unsupervised Machine Learning for Agricultural Supply Chain Data Labeling -- 1 Introduction -- 2 Unsupervised Machine Learning in Agriculture -- 3 Methodology -- 4 Results -- 5 Discussion -- 5.1 Training Time for Each Model -- 5.2 Implementation Difficulties -- 5.3 Benefits for SC Traceability -- 5.4 Adaptation to Other SCs -- 6 Conclusions -- References.
Record Nr. UNINA-9910552715003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information and communication technologies for agriculture-Theme IV : actions / / edited by Dionysis D. Bochtis [and four others]
Information and communication technologies for agriculture-Theme IV : actions / / edited by Dionysis D. Bochtis [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (293 pages)
Disciplina 630.2085
Collana Springer Optimization and Its Applications
Soggetto topico Agricultural informatics
Innovacions agrícoles
Internet de les coses
Aplicacions industrials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-84156-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466555703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Information and communication technologies for agriculture-Theme IV : actions / / edited by Dionysis D. Bochtis [and four others]
Information and communication technologies for agriculture-Theme IV : actions / / edited by Dionysis D. Bochtis [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (293 pages)
Disciplina 630.2085
Collana Springer Optimization and Its Applications
Soggetto topico Agricultural informatics
Innovacions agrícoles
Internet de les coses
Aplicacions industrials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-84156-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910552711703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Move Towards Zero Hunger / / by Basanta Kumara Behera, Pramod Kumar Rout, Shyambhavee Behera
Move Towards Zero Hunger / / by Basanta Kumara Behera, Pramod Kumar Rout, Shyambhavee Behera
Autore Behera Basanta Kumara
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVI, 208 p. 44 illus., 42 illus. in color.)
Disciplina 630
Soggetto topico Agriculture
Sustainable development
Agriculture - Economic aspects
Food—Biotechnology
Nutrition
Sustainable Development
Agricultural Economics
Food Science
Agricultura sostenible
Innovacions agrícoles
Soggetto genere / forma Llibres electrònics
ISBN 981-329-800-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Envisioning Zero Hunger -- Chapter 2: Water, Energy and food Security- pillars for Zero Hunger -- Chapter 3: Paradigms for Zero Hunger -- Chapter 4: Health for All -- Chapter 5: Rural Women Encounter Hunger and Poverty -- Chapter 6: Sustainable Livestock Farming for Zero Hunger -- Chapter 7: Micro Livestock farming -- Chapter 8: World Hunger and Poverty.
Record Nr. UNINA-9910373915303321
Behera Basanta Kumara  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Specialty Crops for Climate Change Adaptation : Strategies for Enhanced Food Security by Using Machine Learning and Artificial Intelligence / / by Chandrasekar Vuppalapati
Specialty Crops for Climate Change Adaptation : Strategies for Enhanced Food Security by Using Machine Learning and Artificial Intelligence / / by Chandrasekar Vuppalapati
Autore Vuppalapati Chandrasekar
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (836 pages)
Disciplina 338.10285
Collana STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health
Soggetto topico Machine learning
Food security
Agriculture
Machine Learning
Food Security
Intel·ligència artificial
Innovacions agrícoles
Conreu
Climatologia agrícola
Seguretat alimentària
Soggetto genere / forma Llibres electrònics
ISBN 9783031383991
9783031383984
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Specialty Crops -- Chapter 3. Time Series Data -- Chapter 4. Climate Models -- Chapter 5. Supervised Models -- Chapter 6. Unsupervised Models -- Chapter 7. Heuristic & Constraint Optimization -- Chapter 8. Deep Learning -- Chapter 9. Dimensionality Reduction -- Chapter 10. Ethical AI -- Chapter 11. Final Thought.
Record Nr. UNINA-9910751387903321
Vuppalapati Chandrasekar  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui