top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The 2x2 matrix : contingency, confusion and the metrics of binary classification / / A. J. Larner
The 2x2 matrix : contingency, confusion and the metrics of binary classification / / A. J. Larner
Autore Larner A. J.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (175 pages)
Disciplina 519.56
Soggetto topico Contingency tables
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 9783030749200
9783030749194
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910520073503321
Larner A. J.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The 2x2 matrix : contingency, confusion and the metrics of binary classification / / A. J. Larner
The 2x2 matrix : contingency, confusion and the metrics of binary classification / / A. J. Larner
Autore Larner A. J.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (175 pages)
Disciplina 519.56
Soggetto topico Contingency tables
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 9783030749200
9783030749194
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466554203316
Larner A. J.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Computing : 12th International Conference, IACC 2022, Hyderabad, India, December 16–17, 2022, Revised Selected Papers, Part I / / edited by Deepak Garg, V. A. Narayana, P. N. Suganthan, Jaume Anguera, Vijaya Kumar Koppula, Suneet Kumar Gupta
Advanced Computing : 12th International Conference, IACC 2022, Hyderabad, India, December 16–17, 2022, Revised Selected Papers, Part I / / edited by Deepak Garg, V. A. Narayana, P. N. Suganthan, Jaume Anguera, Vijaya Kumar Koppula, Suneet Kumar Gupta
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (XXXIV, 506 p. 282 illus., 237 illus. in color.)
Disciplina 006.3
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer engineering
Computer networks
Application software
Education—Data processing
Image processing—Digital techniques
Computer vision
Artificial Intelligence
Computer Engineering and Networks
Computer and Information Systems Applications
Computers and Education
Computer Imaging, Vision, Pattern Recognition and Graphics
Intel·ligència artificial
Intel·ligència artificial en medicina
Enginyeria de programari
Informàtica mèdica
Innovacions tecnològiques
Ensenyament assistit per ordinador
Soggetto genere / forma Llibres electrònics
ISBN 9783031356414
3031356411
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto AI in Industrial Applications -- Application of AI for Disease Classification and Trend Analysis -- Design of agricultural applications using AI -- Disease Classification Using CNN.
Record Nr. UNINA-9910734869303321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced prognostic predictive modelling in healthcare data analytics / / Sudipta Roy, Lalit Mohan Goyal, Mamta Mittal, editors
Advanced prognostic predictive modelling in healthcare data analytics / / Sudipta Roy, Lalit Mohan Goyal, Mamta Mittal, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (317 pages)
Disciplina 610.28563
Collana Lecture Notes on Data Engineering and Communications Technologies
Soggetto topico Artificial intelligence - Medical applications
Medical informatics
Information visualization
Pronòstic mèdic
Simulació per ordinador
Intel·ligència artificial en medicina
Informàtica mèdica
Mineria de dades
Soggetto genere / forma Llibres electrònics
ISBN 981-16-0538-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483684603321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in intelligent computing and communication : proceedings of ICAC 2020 ; Bhubaneswar, Odisha, India, November 2020 / / editors, Swagatam Das, Mihir Narayan Mohanty
Advances in intelligent computing and communication : proceedings of ICAC 2020 ; Bhubaneswar, Odisha, India, November 2020 / / editors, Swagatam Das, Mihir Narayan Mohanty
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (713 pages) : illustrations (chiefly color)
Disciplina 621.382
Collana Lecture notes in networks and systems
Soggetto topico Digital communications
Image processing - Digital techniques
Soft computing
Processament digital d'imatges
Intel·ligència artificial en medicina
Informàtica mèdica
COVID-19
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 981-16-0695-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Classification and Detection of Leaves using Different Image processing Techniques Chapter 2. Covid-19 Detection :An Approach Using X-Ray Images and Deep Learning Techniques Chapter 3. Covid-19 Detection :An Approach Using X-Ray Images and Deep Learning Techniques Chapter 4. Realization of a vehicular robotic system using the principle of photonics Chapter 5. A Modified Hybrid Planar Antenna for Cognitive Radio Application Chapter 6. Detection of Broken and Good Medical Tablets Using Various Machine Learning Models Chapter 7. Lungs Nodule Prediction using Convolutional Neural Network and K-Nearest Neighbor Chapter 8. Quantitative Structure Activity Relationships (QSARs) Study for KCNQ Genes(Kv7) and Drug discovery Chapter 9. Apple fruit disease detection and classification using k-means clustering method Chapter 10. A Detailed Review of the Optimal Distributed Generation Placement in Smart Power Distribution Systems
Record Nr. UNINA-9910483988903321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI-assisted Solutions for COVID-19 and Biomedical Applications in Smart Cities : Third EAI International Conference, AISCOVID-19 2022, Braga, Portugal, November 16-18, 2022, Proceedings / / edited by José Manuel Machado, Hugo Peixoto
AI-assisted Solutions for COVID-19 and Biomedical Applications in Smart Cities : Third EAI International Conference, AISCOVID-19 2022, Braga, Portugal, November 16-18, 2022, Proceedings / / edited by José Manuel Machado, Hugo Peixoto
Autore Machado José Manuel
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (106 pages)
Disciplina 610.285
Altri autori (Persone) PeixotoHugo
Collana Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Soggetto topico Medical informatics
Data structures (Computer science)
Information theory
Coding theory
Application software
Information storage and retrieval systems
Health Informatics
Data Structures and Information Theory
Coding and Information Theory
Computer and Information Systems Applications
Information Storage and Retrieval
COVID-19
Intel·ligència artificial en medicina
Teoria de la codificació
Sistemes d'informació
Informàtica mèdica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031382048
3031382048
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COVID-19 Global Impact -- Not Necessarily Relaxed: How Work Interruptions affect Users’ Perception of Stress in Remote Work Situations -- COVID-19 cases and their impact on global air traffic -- The Impact of contingency measures on the COVID-19 reproduction rate -- AI applied to COVID-19 -- Business Intelligence Platform for COVID-19 Monitoring: A Case Study -- First Clustering Analysis of COVID in Portugal -- Multichannel services for patient home-based care during COVID-19 -- Machine Learning In Healthcare -- Steps Towards Intelligent Diabetic Foot Ulcer Follow-up based on Deep Learning -- Recommendation of Medical Exams to Support Clinical Diagnosis based on Patient’s Symptoms.
Record Nr. UNINA-9910736021103321
Machado José Manuel  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence in COVID-19 / / Niklas Lidströmer and Yonina C. Eldar, editors
Artificial intelligence in COVID-19 / / Niklas Lidströmer and Yonina C. Eldar, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (346 pages)
Disciplina 362.1962414
Soggetto topico COVID-19 (Disease) - Data processing
Medical informatics
Pandemics - Economic aspects
COVID-19
Epidèmies
Processament de dades
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-08506-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- About the Editors -- Chapter 1: Introduction to Artificial Intelligence in COVID-19 -- Pandemics -- History of Pandemics -- The COVID-19 Pandemic -- Origins of the COVID-19 Pandemic -- Continuous Fight for Science and Reason -- Modern Tools for Pandemic Control -- A Brief Chronology of the Chapters of This Book -- Power of Science -- References -- Chapter 2: AI for Pooled Testing of COVID-19 Samples -- Introduction -- System Model -- The PCR Process -- Mathematical Model -- Pooled COVID-19 Tests -- Recovery from Pooled Tests -- Group Testing Methods for COVID-19 -- Adaptive GT Methods -- Non-Adaptive GT Methods -- Pooling Matrix -- Noiseless Linear Non-Adaptive Recovery -- Noisy Non-Linear Non-Adaptive Recovery -- Summary -- Compressed Sensing for Pooled Testing for COVID-19 -- Compressed Sensing Forward Model for Pooled RT-PCR -- CS Algorithms for Recovery -- Details of Algorithms -- Assessment of Algorithm Performance and Experimental Protocols -- Choice of Pooling Matrices -- Choice of Number of Pools -- Use of Side Information in Pooled Inference -- Comparative Discussion and Summary -- References -- Chapter 3: AI for Drug Repurposing in the Pandemic Response -- Introduction -- Desirable Features of AI for Drug Repurposing in Pandemic Response -- Technical Flexibility and Efficiency -- Clinical Applicability and Acceptability -- Major AI Applications for Drug Repurposing in Response to COVID-19 -- Knowledge Mining -- Network-Based Analysis -- In Silico Modelling -- IDentif.AI Platform for Rapid Identification of Drug Combinations -- Project IDentif.AI -- IDentif.AI for Drug Optimization Against SARS-CoV-2 -- IDentif.AI 2.0 Platform in an Evolving Pandemic -- IDentif.AI as a Pandemic Preparedness Platform -- Use of Real-World Data to Identify Potential Targets for Drug Repurposing.
Future Directions -- References -- Chapter 4: AI and Point of Care Image Analysis for COVID-19 -- Introduction -- Motivation for Using Imaging -- Motivation for Using AI with Imaging -- Integration of Imaging with Other Modalities -- Literature Overview -- Chest X-Ray Imaging -- Diagnosis Models -- Prognosis Models -- Use of Longitudinal Imaging -- Fusion with Other Data Modalities -- Common Issues with AI and Chest X-Ray Imaging -- Duplication and Quality Issues -- Source Issues -- Frankenstein Datasets -- Implicit Biases in the Source Data -- Artificial Limitations Due to Transfer Learning -- Computed Tomography Imaging -- Diagnosis Models -- Prognosis Models -- Applications to Regions Away from the Lungs -- Use of Longitudinal Imaging -- Fusion with Other Data Modalities -- Common Issues with AI and Computed Tomography Imaging -- Ultrasound Imaging -- What Can be Observed in LUS -- Models Assisting in Interpreting LUS -- Diagnosis Models -- Prognosis Models -- Use of Longitudinal Imaging -- Common Issues with AI and Ultrasound Imaging -- Conclusions -- Success Stories -- Pitfalls to Focus On -- Lessons Learned and Recommendations -- The Next Pandemic -- References -- Chapter 5: Machine Learning and Laboratory Values in the Diagnosis, Prognosis and Vaccination Strategy of COVID-19 -- Introduction -- COVID-19, Machine Learning and Laboratory Values: The State of the Art -- Literature Search Results -- Diagnostic Studies -- Prognostic Studies -- Considerations on the Literature Reviewed -- Heterogeneity in Patient Selection -- Laboratory Parameters Used by Machine Learning Models -- Types of Models and Their Validation -- Model Implementation -- The Role of Artificial Intelligence in the Vaccination Strategy Against SARS-COV-2 Through Laboratory Tests -- Real-World Vaccination Strategies -- Artificial Intelligence Potentialities -- Conclusions.
Appendix 1 -- Diagnostic Papers (D) -- Prognostic Papers (P) -- Appendix 2: Tool Online -- References -- Chapter 6: AI and the Infectious Medicine of COVID-19 -- Introduction -- AI and ML for SARS-CoV-2 Early Research Using Pathogen Sequence Data -- AI and ML for Research of SARS-CoV-2 Antivirals -- AI and ML for COVID-19 Infectious Medicine Early Research Using Language Data -- AI and ML in Real World Data Analysis of COVID-19 -- AI and ML in Molecular Diagnostics of COVID-19 -- AI and ML in Image-Based Diagnostics of COVID-19 and Clinical Decision Support -- AI and ML in COVID-19 Medical Care -- Prevention, Infection Risk and Epidemiology -- Treatment and Prognosis -- Conclusions -- References -- Chapter 7: AI and ICU Monitoring on the Wake of the COVID-19 Pandemic -- Introduction -- ICU Monitoring Through AI -- ICU Monitoring and AI in Pre-pandemic Times -- The Impact of the COVID-19 Pandemic on the ICU and the Role of AI -- Conclusions -- References -- Chapter 8: Symptom Based Models of COVID-19 Infection Using AI -- Introduction -- Using Machine Learning Methods to Determine Mortality of Patient with COVID-19 -- Using Machine Learning Methods to Detect the Presence of COVID-19 Infection -- Using Machine Learning Methods to Differentiate COVID-19 and Influenza/Common Cold Infections -- Summary, Limitations, Challenges, and Future Applications -- References -- Chapter 9: AI Techniques for Forecasting Epidemic Dynamics: Theory and Practice -- Introduction -- A Review of Model Types and Limits to Forecasting -- Preliminaries -- Model Details -- Metrics for Forecast Evaluations -- AI-Driven Engineering -- An Example of a Real-time Forecasting Model -- Results -- A GNN-Based Spatio-Temporal Model -- Additional Details Regarding the Framework -- Forecasting Performance -- Theoretical Foundations for Forecasting in Network Models -- Overview.
Some Short-Term Forecasting Problems and Their Computational Intractability -- Discussion -- References -- Chapter 10: Regulatory Aspects on AI and Pharmacovigilance for COVID-19 -- What Does Artificial Intelligence Mean According to Legal Definition? -- AI and Health -- The European Union Legal Framework: A Work in Progress -- The Proposed EU Regulation (Artificial Intelligence Act) -- The Use of AI in Research and Developing Medicinal Products and Monitoring Their Quality, Safety and Efficacy -- The Added Value Brought Using Artificial Intelligence in Performing Pharmacovigilance Activities in General and During the COVID-19 Pandemic -- Ethical Issues: A Few Caveats -- The Personal Data Protection Implications -- Provisional Conclusions -- Suggested Reading -- Chapter 11: AI and the Clinical Immunology/Immunoinformatics for COVID-19 -- Introduction -- Challenge for Traditional Vaccines in COVID-19 -- Long Development and Design Period -- Difficulties in Knowing and Optimizing the Efficacy and Side Effects -- Uncertainties with the Development and Other Costs During Production, Storage, and Transportation -- Hard to Tackle Unknown and Emerging Mutations of Viruses -- Existing AI Techniques Help the Traditional Vaccine Development in COVID-19 -- AI Makes the Practical Experimental Results Computational -- AI-Based Computational Tools Can Help the Traditional Vaccine Design -- AI-Based In Silico Vaccine Design -- Our Recently Proposed DeepVacPred Vaccine Design Framework -- Artificial Intelligence for Investigating Viral Evolution and Mutations -- An Algorithmic Information Theoretic Approach to Discover the State Machine Generator Governing the Viral Sequence Structure and Enabling AI Strategies for Viral Mutation Prediction -- Characterizing the Temporal Evolution of SARS-CoV-2 in a Continuous Manner.
Detecting Regions Within Viral Sequences Likely to Exhibit Mutations -- Summary -- References -- Chapter 12: AI and Dynamic Prediction of Deterioration in Covid-19 -- Introduction -- COVID-19: A Novel Disease-Usage of Newer or Older Clinical Decisions Support Systems? -- Clinical Decisions Support System Stable Parameters/Features Using Threshold Values -- Patient Deterioration -- General Prediction Scores -- Early Warning Systems (EWS) -- AI for Prediction of Deterioration -- AI Assisted Patient-Specific Risk Prediction -- AI Assisted Prediction of Critical Illness and Deterioration in COVID-19 Patients -- Mortality Prediction Models for Covid-19 -- Mortality Prediction Models Using High-Frequency Data -- Prediction Models for Sepsis -- Explainable and Interpretable Machine Learning Methods for Clinical Decision Support Systems -- References -- Chapter 13: AI, Epidemiology and Public Health in the Covid Pandemic -- Introduction -- Epidemiology: Definition and Purposes -- Epidemiology and Public Health: How They Relate to Each Other and the Concept of One Health -- Individual Health and Population Health -- The Articulation Between Individual and Population Level -- Biomedical and Biopsychosocial Models of Health: Individual, Environmental and Social Determinants of Health -- From Precision Medicine to Precision Public Health -- Epidemiology and Public Health in the Digital Era: Prerequisites -- A Ubiquitous Digitization -- The Evolutions of the Regulatory Framework on Personal Data -- Connected Devices and Equipment Rates -- Digital and E-health Literacy -- Towards a Real Life Use of AI in Epidemiology and Public Health: Some First Examples -- No Data Means No Artificial Intelligence: A Few Words About Data Federation and "New" Types of Data -- Citizens and Patients as Producers, Actor and Manager of Their Own Health.
At the Population Level, Health Surveillance Systems and AI.
Record Nr. UNINA-9910624309003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Association Analysis Techniques and Applications in Bioinformatics / / by Qingfeng Chen
Association Analysis Techniques and Applications in Bioinformatics / / by Qingfeng Chen
Autore Chen Qingfeng
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (396 pages)
Disciplina 570.285
Soggetto topico Data mining
Expert systems (Computer science)
Machine learning
Bioinformatics
Big data
Medical informatics
Data Mining and Knowledge Discovery
Knowledge Based Systems
Machine Learning
Computational and Systems Biology
Big Data
Health Informatics
Bioinformàtica
Aprenentatge automàtic
Sistemes experts (Informàtica)
Informàtica mèdica
Mineria de dades
Dades massives
Soggetto genere / forma Llibres electrònics
ISBN 9789819982516
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1:Computer science for Molecular biology -- Chapter2:Introduction to association analysis -- Chapter3:Introduction to computational linguistics and biology structure -- Chapter4:Matrix decomposition for dimensionality deduction -- Chapter5:Discovering conserved RNA secondary structures with structure similarity -- Chapter6:Gene ontology for non-coding RNAs classification -- Chapter7:Learning frequent sub-structure by graph mining -- Chapter8:Editing distance and its application to biology graph analytics -- Chapter9:Sequence assembly and applications -- Chapter10:Classifying protein structures by measuring structural similarity -- Chapter11:Identification of metabolic pathways with embedding network -- Chapter12:Emerging Knowledge integration-based approach with multi-sources data for bioinformatics -- Chapter13:Conclusion and Future Work.
Record Nr. UNINA-9910855365003321
Chen Qingfeng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basic knowledge of medical imaging informatics : undergraduate level and level I / / Peter M. A. van Ooijen, editor
Basic knowledge of medical imaging informatics : undergraduate level and level I / / Peter M. A. van Ooijen, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (103 pages)
Disciplina 616.0754
Collana Imaging Informatics for Healthcare Professionals
Soggetto topico Radiology
Medical informatics
Imatges mèdiques
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-71885-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484385703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analysis and Artificial Intelligence for Medical Sciences
Big Data Analysis and Artificial Intelligence for Medical Sciences
Autore Carpentieri Bruno
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (433 pages)
Disciplina 610.28563
Altri autori (Persone) LeccaPaola
Soggetto topico Artificial intelligence
Big data
Intel·ligència artificial en medicina
Informàtica mèdica
Dades massives
Soggetto genere / forma Llibres electrònics
ISBN 9781119846543
1119846544
9781119846567
1119846560
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction -- 1.1 Disease Diagnoses -- 1.2 Drug Development -- 1.3 Personalized Medicine -- 1.4 Gene Editing -- Author Biographies -- References -- Chapter 2 Fuzzy Logic for Knowledge‐Driven and Data‐Driven Modeling in Biomedical Sciences -- 2.1 Introduction -- 2.2 Fuzzy Logic -- 2.2.1 Fuzzy Sets -- 2.2.2 Linguistic Variables -- 2.2.3 Fuzzy Rules -- 2.2.4 Fuzzy Inference Systems -- 2.2.5 Simpful -- 2.3 Knowledge‐Driven Modeling -- 2.3.1 Dynamic Fuzzy Modeling -- 2.3.2 Application 1: Maximizing Cancer Cells Death with Minimal Drug Combinations -- 2.3.3 FuzzX: A Hybrid Mechanistic‐Fuzzy Modeling and Simulation Engine -- 2.3.4 Application 2: Analyzing Oscillatory Regimes in Signal Transduction Pathways -- 2.4 Data‐Driven Modeling -- 2.4.1 pyFUME: Automatic Generation of Fuzzy Inference Systems -- 2.4.2 Application 3: Assessing Tremor Severity in Neurological Disorders -- 2.5 Discussion
Record Nr. UNINA-9911019717903321
Carpentieri Bruno  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui