Algae Mediated Bioremediation : Industrial Prospectives, 2 Volumes
| Algae Mediated Bioremediation : Industrial Prospectives, 2 Volumes |
| Autore | Ravishankar Gokare A |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (810 pages) |
| Disciplina | 628.5 |
| Altri autori (Persone) |
RaoAmbati Ranga
KimSe-Kwon |
| Soggetto topico |
Algae
Industrial applications |
| ISBN |
9783527843350
3527843353 9783527843343 3527843345 9783527843367 3527843361 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Foreword -- Preface -- Acknowledgment -- Part I Phycoremediation Strategies -- Chapter 1 Microalgal Process Technologies for Removal of High Load of Pollutants from Wastewater -- 1.1 Introduction -- 1.2 Microalgal Cultivation Techniques -- 1.2.1 Open System -- 1.2.2 Closed System -- 1.3 Microalgal Wastewater Remediation -- 1.3.1 Heavy Metals Removal -- 1.3.2 Phosphates and Nitrates Removal -- 1.3.3 Organic Compounds Removal -- 1.4 Microalgal‐Based Hybrid Systems For Wastewater Treatment -- 1.4.1 Nanomaterials -- 1.4.2 Activated Carbon -- 1.4.3 Polymers -- 1.5 Microalgae Consortium -- 1.6 Future Perspectives -- 1.7 Conclusion -- References -- Chapter 2 Synergistic Bacteria-Algae Efficiency in Remediation of Heavy Metals in Wastewater -- 2.1 Introduction -- 2.2 Heavy Metals -- 2.2.1 Sources of Heavy Metals in the Wastewater -- 2.2.2 Effects Caused Due to Heavy Metals in Water -- 2.3 Role of Bacteria and Algae in the Remediation of Heavy Metals -- 2.3.1 Role of Algae -- 2.3.2 Role of Bacteria -- 2.3.3 Synergism Between Algae-Bacteria Consortium -- 2.3.4 Factors Affecting the Microalgal System -- 2.4 Diverse Mechanisms of Heavy Metal Remediation -- 2.4.1 Biosorption -- 2.4.2 Bioaccumulation -- 2.5 Applications -- 2.6 Future Prospects -- 2.7 Conclusion -- Conflict of Interests -- Acknowledgment -- References -- Chapter 3 Immobilization of Microalgae for Bioremediation of Wastewater -- 3.1 Introduction -- 3.2 Microalgae -- 3.3 Immobilization Techniques for Microalgal Cells -- 3.4 Applications of Immobilized Microalgae in Pollutants Removal -- 3.4.1 Removal of Nutrients and Pesticides from Industrial Wastewater -- 3.4.2 Heavy Metals Removal -- 3.4.3 Dyes and Hydrocarbon Removal from Textile Wastewater -- 3.5 Large‐Scale Production of Microalgal System -- 3.6 Future Perspectives.
3.7 Conclusion -- Abbreviations -- References -- Chapter 4 Immobilized Microalgae‐Based Processes: Is It a Viable Pathway for Wastewater Treatment? -- 4.1 Introduction -- 4.2 Why Use Immobilized Microalgae for Wastewater Treatment? -- 4.2.1 Pros and Cons of Immobilized Microalgae -- 4.3 Immobilization Techniques -- 4.4 Microalgae Immobilization Systems for Wastewater Treatment -- 4.5 Downstream Applications of Microalgae Immobilized Systems -- 4.6 Conclusions and Future Outlook -- Acknowledgment -- References -- Chapter 5 Bioreactors and Operation Modes for Microalgae‐Based Wastewater Treatment -- 5.1 Introduction -- 5.2 Bioreactor Types and Operating Conditions -- 5.3 Operation Modes in Microalgae Cultivation -- 5.4 Conclusions and Future Prospects -- References -- Chapter 6 Removal of Heavy Metals from the Aquatic and Terrestrial Ecosystems by Microalgae -- 6.1 Introduction -- 6.2 Heavy Metals and their Breakneck Consequences in the Aquatic Ecosystem -- 6.3 Microalgae - The Promising Resource for the Remediation of Heavy Metals -- 6.4 Competitiveness of Microalgae over other Techniques in the Exclusion of HMs -- 6.5 Remediation Mechanisms of Numerous HMs via Microalgae -- 6.5.1 Biosorption -- 6.5.1.1 Physical Adsorption -- 6.5.1.2 Ion Exchange -- 6.5.1.3 Complexation -- 6.5.1.4 Precipitation -- 6.5.2 Bioaccumulation -- 6.5.3 Biotransformation -- 6.6 Recent Advanced Strategies for Microalgae‐Based Heavy Metals Removal -- 6.6.1 Immobilization of Microalgae -- 6.6.2 Development of Consortia of Microalgae -- 6.6.3 Application of Genetic and Metabolic Engineering Tools -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- Abbreviations -- References -- Chapter 7 Seaweeds as Accumulators of Heavy Metals: Current Status on Heavy Metal Sequestration -- 7.1 Introduction -- 7.2 Seaweeds and Marine Ecosystem. 7.3 Heavy Metals and their Effects on the Marine Ecosystem and Environments -- 7.3.1 Seaweeds as Bioindicators/Biomonitors of Heavy Metal Pollution -- 7.4 Heavy Metal Accumulation and Food Chain -- 7.5 Removal of Heavy Metals -- 7.6 Role of Seaweeds in Bioremediation/ Phycoremediation -- 7.6.1 Brown Seaweeds -- 7.6.2 Red Seaweeds -- 7.6.3 Green Seaweeds -- 7.7 Futuristic Plans for Sequestration of Heavy Metals by Cultivation of Seaweeds -- 7.8 Conclusion -- Abbreviations -- References -- Chapter 8 Bioremediation of Wastewater Employing Microalgae -- 8.1 Introduction -- 8.2 Microalgae and Their Wonders -- 8.3 Wastewater Treatment Using Microalgae -- 8.3.1 Bioremediation of Industrial Effluents -- 8.3.2 Bioremediation of Heavy Metal -- 8.3.3 Bioremediation of Pathogenic Organisms -- 8.3.4 Bioremediation of Dyes Removal -- 8.4 Photobioreactors (PBRs) Used in the Bioremediation of Wastewater -- 8.4.1 Suspended Microalgae Systems for Wastewater Treatment -- 8.4.2 Immobilized Microalgae Systems for Wastewater Treatment -- 8.4.2.1 Microalgae Turf Scrubber -- 8.4.2.2 Fixed Bed Systems -- 8.4.2.3 Fluidized Bed Systems -- 8.5 End Use of Cultivated Microalgae in Wastewater -- 8.6 Challenges -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 The Combined Use of Alginate and Chitosan in the Removal of Dye and Heavy Metal Ions -- 9.1 Introduction -- 9.2 The Combined Use of Alginate and Chitosan in the Treatment of Wastewater Containing Heavy Metal Ions -- 9.2.1 Experimental Procedure and Initial Observation -- 9.2.2 Effect of the Ratio Between Chitosan and Sodium Alginate on the Treatment Result -- 9.2.3 Effect of Treatment Time -- 9.2.4 Effect of Temperature -- 9.2.5 Treatment Efficiency for Different Types of Heavy Metal Ions -- 9.3 The Combined Use of Alginate and Chitosan in the Treatment of Wastewater‐Containing Dye. 9.3.1 The Principles of Using Chitosan and Alginate in Removing Waste Dye -- 9.3.2 Experimental Procedure -- 9.3.3 Effect of Chitosan and Alginate Concentration on Dye Removal -- 9.3.4 Effect of the Ratio Between Chitosan and Alginate on Dye Removal -- 9.3.5 Effect of Temperature and Time on Dye Removal -- 9.4 Applications of Alginate and Chitosan as Immobilizing Agents in Wastewater Treatment Technologies -- 9.5 Conclusions -- References -- Part II Anaerobic Digestion for Removal of Pollutants and Sewage Treatment -- Chapter 10 Treatment of Swine Wastewater Using Microalgae -- 10.1 Introduction -- 10.2 MbWT as Primary Treatment for SW -- 10.3 MbWT as a Complementary Treatment for SW -- 10.3.1 Anaerobic Treatment -- 10.3.2 Flocculation-Coagulation -- 10.3.3 Ultraviolet Radiation Treatment -- 10.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 11 Potential of Algal Culture to Treat Anaerobic Digestate of Piggery Waste for Bioremediation and Biomass Production -- 11.1 Introduction -- 11.2 From Raw Wastewater to Anaerobic Digestate -- 11.2.1 Nutrient Load and Properties of Raw Piggery Wastewater -- 11.2.2 Algal Growth Studies Using Raw Piggery Effluent -- 11.2.3 Features and Advantages of Piggery Wastewater Anaerobic Digestate -- 11.2.3.1 The Biological Breakdown of Nitrogen Compounds and the Formation of Ammonia -- 11.2.3.2 Turbidity (Dark Color) of Wastewater -- 11.2.3.3 High pH -- 11.2.4 Previous Studies Using Algae to Treat Anaerobic Digestate -- 11.3 Potential use of Produced Biomass -- 11.3.1 Pig Feed -- 11.3.2 Biogas Production Enrichment -- 11.3.3 Plant Fertiliser or Other Exportable -- 11.3.4 Water Purification -- 11.3.5 Carbon Capture -- 11.4 Limits to Algal Growth in ADPE -- 11.4.1 The Concern of High Ammonia Concentration -- 11.4.2 Phosphate Availability -- 11.4.3 Micronutrient Limitations and Interactions. 11.4.4 Addition of CO2 and pH Control -- 11.4.5 Cell Density -- 11.4.6 Mixing and Pond Depth -- 11.4.7 Temperature -- 11.4.8 Strain Selection -- 11.4.9 Digestate Pretreatments -- 11.4.10 Advanced and Future Optimization Approaches -- 11.5 Process Design -- 11.5.1 Life Cycle Assessment (LCA) -- 11.5.2 Potential Process Design -- 11.6 Economics of Culturing Algae Using Piggery Digestate -- 11.6.1 Scope -- 11.6.2 Potential Products -- 11.6.3 Model Development -- 11.7 Future Perspectives -- Acronyms -- Acknowledgments -- References -- Chapter 12 Algae and Biogas Plants: Digestate Remediation and Nutrient Recycling with Algal Systems -- 12.1 Introduction -- 12.2 Microalgae Integration in Biogas Plants -- 12.2.1 Liquid Fraction of Anaerobic Digestate as a Growth Medium -- 12.2.2 Options for Integrating Microalgae Cultivation into Biogas Plants -- 12.3 Microalgal Cultivation on Anaerobic Digestate - Challenges and Solutions -- 12.3.1 Digestate Composition and Characteristics -- 12.3.2 Selection of Algae Species -- 12.3.3 Mathematical Modeling -- 12.4 Microalgae‐based Biogas Upgrading -- 12.4.1 Fundamentals -- 12.4.2 Parameters Affecting Photosynthetic Biogas Upgrading -- 12.5 Valorization -- 12.5.1 Biofertilizers, Biostimulants, and Animal Feed -- 12.5.2 Biorefineries (Biofuels, Bioplastics, and Cosmetics) -- 12.6 Conclusions and Future Perspective -- Acknowledgements -- Abbreviations -- References -- Part III Treatment of Agricultural Wastes -- Chapter 13 Phycoremediation of Aquaculture Wastewater by Algae -- 13.1 Introduction -- 13.2 Global Production and Significance of the Aquaculture Industry -- 13.3 Aquaculture Wastewater is a Critical Hazard -- 13.4 Phycoremediation by Algae: A Green Technology for the Treatment of Aquaculture Wastewater -- 13.5 Algal‐Based Phycoremediation Process for Aquaculture Wastewater Treatment. 13.6 Major Challenges and Constraints of Algae‐Based Phycoremediation of Aquaculture. |
| Record Nr. | UNINA-9911019336703321 |
Ravishankar Gokare A
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fucoxanthin and Astaxanthin : Production, Biofunction, and Application / / Masashi Hosokawa, Hayato Maeda, editor
| Fucoxanthin and Astaxanthin : Production, Biofunction, and Application / / Masashi Hosokawa, Hayato Maeda, editor |
| Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 |
| Descrizione fisica | 1 online resource (196 pages) |
| Disciplina | 612.39 |
| Soggetto topico |
Metabolism
Industrial applications Bioavailability |
| ISBN | 3-0365-6325-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Editors -- Fucoxanthin Suppresses Osteoclastogenesis via Modulation of MAP Kinase and Nrf2 Signaling -- Protective Effects of Fucoxanthin on Hydrogen Peroxide-Induced Calcification of Heart Valve Interstitial Cells -- NaCl Promotes the Efficient Formation of Haematococcus pluvialis Nonmotile Cells under Phosphorus Deficiency -- Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (AstaP) in Scenedesmaceae -- Transcriptomics and Metabolomics Analyses Provide Novel Insights into Glucose-Induced -- Trophic Transition of the Marine Diatom Nitzschia laevis -- A Method of Solubilizing and Concentrating Astaxanthin and Other Carotenoids -- Astaxanthin Delivery Systems for Skin Application: A Review -- Production of Fucoxanthin from Phaeodactylum tricornutum Using High Performance -- Countercurrent Chromatography Retaining Its FOXO3 Nuclear Translocation-Inducing Effect -- The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review -- Inhibitory Effect of Astaxanthin on Testosterone-Induced Benign Prostatic Hyperplasia in Rats -- Fucoxanthin Pretreatment Ameliorates Visible Light-Induced Phagocytosis Disruption of RPE -- Cells under a Lipid-Rich Environment via the Nrf2 Pathway -- Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology -- Monocaprin Enhances Bioavailability of Fucoxanthin in Diabetic/Obese KK-Ay Mice. |
| Record Nr. | UNINA-9910647227703321 |
| [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green chemistry and catalysis [[electronic resource] /] / Roger Arthur Sheldon, Isabel Arends, and Ulf Hanefeld
| Green chemistry and catalysis [[electronic resource] /] / Roger Arthur Sheldon, Isabel Arends, and Ulf Hanefeld |
| Autore | Sheldon Roger A |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, 2007 |
| Descrizione fisica | 1 online resource (451 p.) |
| Disciplina | 660.2995 |
| Altri autori (Persone) |
ArendsIsabel
HanefeldUlf |
| Soggetto topico |
Catalysis
Industrial applications Sustainable development |
| ISBN |
1-280-92171-4
9786610921713 3-527-61100-2 3-527-61101-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Green Chemistry and Catalysis; Contents; Preface; Foreword; 1 Introduction: Green Chemistry and Catalysis; 1.1 Introduction; 1.2. E Factors and Atom Efficiency; 1.3 The Role of Catalysis; 1.4 The Development of Organic Synthesis; 1.5 Catalysis by Solid Acids and Bases; 1.6 Catalytic Reduction; 1.7 Catalytic Oxidation; 1.8 Catalytic C-C Bond Formation; 1.9 The Question of Solvents: Alternative Reaction Media; 1.10 Biocatalysis; 1.11 Renewable Raw Materials and White Biotechnology; 1.12 Enantioselective Catalysis; 1.13 Risky Reagents; 1.14 Process Integration and Catalytic Cascades; References
2 Solid Acids and Bases as Catalysts2.1 Introduction; 2.2 Solid Acid Catalysis; 2.2.1 Acidic Clays; 2.2.2 Zeolites and Zeotypes: Synthesis and Structure; 2.2.3 Zeolite-catalyzed Reactions in Organic Synthesis; 2.2.3.1 Electrophilic Aromatic Substitutions; 2.2.3.2 Additions and Eliminations; 2.2.3.3 Rearrangements and Isomerizations; 2.2.3.4 Cyclizations; 2.2.4 Solid Acids Containing Surface SO(3)H Functionality; 2.2.5 Heteropoly Acids; 2.3 Solid Base Catalysis; 2.3.1 Anionic Clays: Hydrotalcites; 2.3.2 Basic Zeolites; 2.3.3 Organic Bases Attached to Mesoporous Silicas; 2.4 Other Approaches References3 Catalytic Reductions; 3.1 Introduction; 3.2 Heterogeneous Reduction Catalysts; 3.2.1 General Properties; 3.2.2 Transfer Hydrogenation Using Heterogeneous Catalysts; 3.2.3 Chiral Heterogeneous Reduction Catalysts; 3.3 Homogeneous Reduction Catalysts; 3.3.1 Wilkinson Catalyst; 3.3.2 Chiral Homogeneous Hydrogenation Catalysts and Reduction of the C= C Double Bond; 3.3.3 Chiral Homogeneous Catalysts and Ketone Hydrogenation; 3.3.4 Imine Hydrogenation; 3.3.5 Transfer Hydrogenation using Homogeneous Catalysts; 3.4 Biocatalytic Reductions; 3.4.1 Introduction 3.4.2 Enzyme Technology in Biocatalytic Reduction3.4.3 Whole Cell Technology for Biocatalytic Reduction; 3.5 Conclusions; References; 4 Catalytic Oxidations; 4.1 Introduction; 4.2 Mechanisms of Metal-catalyzed Oxidations: General Considerations; 4.2.1 Homolytic Mechanisms; 4.2.1.1 Direct Homolytic Oxidation of Organic Substrates; 4.2.2 Heterolytic Mechanisms; 4.2.2.1 Catalytic Oxygen Transfer; 4.2.3 Ligand Design in Oxidation Catalysis; 4.2.4 Enzyme Catalyzed Oxidations; 4.3 Alkenes; 4.3.1 Epoxidation; 4.3.1.1 Tungsten Catalysts; 4.3.1.2 Rhenium Catalysts; 4.3.1.3 Ruthenium Catalysts 4.3.1.4 Manganese Catalysts4.3.1.5 Iron Catalysts; 4.3.1.6 Selenium and Organocatalysts; 4.3.1.7 Hydrotalcite and Alumina Systems; 4.3.1.8 Biocatalytic Systems; 4.3.2 Vicinal Dihydroxylation; 4.3.3 Oxidative Cleavage of Olefins; 4.3.4 Oxidative Ketonization; 4.3.5 Allylic Oxidations; 4.4 Alkanes and Alkylaromatics; 4.4.1 Oxidation of Alkanes; 4.4.2 Oxidation of Aromatic Side Chains; 4.4.3 Aromatic Ring Oxidation; 4.5 Oxygen-containing Compounds; 4.5.1 Oxidation of Alcohols; 4.5.1.1 Ruthenium Catalysts; 4.5.1.2 Palladium-catalyzed Oxidations with O(2); 4.5.1.3 Gold Catalysts 4.5.1.4 Copper Catalysts |
| Record Nr. | UNINA-9910144290603321 |
Sheldon Roger A
|
||
| Weinheim, : Wiley-VCH, 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green chemistry and catalysis [[electronic resource] /] / Roger Arthur Sheldon, Isabel Arends, and Ulf Hanefeld
| Green chemistry and catalysis [[electronic resource] /] / Roger Arthur Sheldon, Isabel Arends, and Ulf Hanefeld |
| Autore | Sheldon Roger A |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, 2007 |
| Descrizione fisica | 1 online resource (451 p.) |
| Disciplina | 660.2995 |
| Altri autori (Persone) |
ArendsIsabel
HanefeldUlf |
| Soggetto topico |
Catalysis
Industrial applications Sustainable development |
| ISBN |
1-280-92171-4
9786610921713 3-527-61100-2 3-527-61101-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Green Chemistry and Catalysis; Contents; Preface; Foreword; 1 Introduction: Green Chemistry and Catalysis; 1.1 Introduction; 1.2. E Factors and Atom Efficiency; 1.3 The Role of Catalysis; 1.4 The Development of Organic Synthesis; 1.5 Catalysis by Solid Acids and Bases; 1.6 Catalytic Reduction; 1.7 Catalytic Oxidation; 1.8 Catalytic C-C Bond Formation; 1.9 The Question of Solvents: Alternative Reaction Media; 1.10 Biocatalysis; 1.11 Renewable Raw Materials and White Biotechnology; 1.12 Enantioselective Catalysis; 1.13 Risky Reagents; 1.14 Process Integration and Catalytic Cascades; References
2 Solid Acids and Bases as Catalysts2.1 Introduction; 2.2 Solid Acid Catalysis; 2.2.1 Acidic Clays; 2.2.2 Zeolites and Zeotypes: Synthesis and Structure; 2.2.3 Zeolite-catalyzed Reactions in Organic Synthesis; 2.2.3.1 Electrophilic Aromatic Substitutions; 2.2.3.2 Additions and Eliminations; 2.2.3.3 Rearrangements and Isomerizations; 2.2.3.4 Cyclizations; 2.2.4 Solid Acids Containing Surface SO(3)H Functionality; 2.2.5 Heteropoly Acids; 2.3 Solid Base Catalysis; 2.3.1 Anionic Clays: Hydrotalcites; 2.3.2 Basic Zeolites; 2.3.3 Organic Bases Attached to Mesoporous Silicas; 2.4 Other Approaches References3 Catalytic Reductions; 3.1 Introduction; 3.2 Heterogeneous Reduction Catalysts; 3.2.1 General Properties; 3.2.2 Transfer Hydrogenation Using Heterogeneous Catalysts; 3.2.3 Chiral Heterogeneous Reduction Catalysts; 3.3 Homogeneous Reduction Catalysts; 3.3.1 Wilkinson Catalyst; 3.3.2 Chiral Homogeneous Hydrogenation Catalysts and Reduction of the C= C Double Bond; 3.3.3 Chiral Homogeneous Catalysts and Ketone Hydrogenation; 3.3.4 Imine Hydrogenation; 3.3.5 Transfer Hydrogenation using Homogeneous Catalysts; 3.4 Biocatalytic Reductions; 3.4.1 Introduction 3.4.2 Enzyme Technology in Biocatalytic Reduction3.4.3 Whole Cell Technology for Biocatalytic Reduction; 3.5 Conclusions; References; 4 Catalytic Oxidations; 4.1 Introduction; 4.2 Mechanisms of Metal-catalyzed Oxidations: General Considerations; 4.2.1 Homolytic Mechanisms; 4.2.1.1 Direct Homolytic Oxidation of Organic Substrates; 4.2.2 Heterolytic Mechanisms; 4.2.2.1 Catalytic Oxygen Transfer; 4.2.3 Ligand Design in Oxidation Catalysis; 4.2.4 Enzyme Catalyzed Oxidations; 4.3 Alkenes; 4.3.1 Epoxidation; 4.3.1.1 Tungsten Catalysts; 4.3.1.2 Rhenium Catalysts; 4.3.1.3 Ruthenium Catalysts 4.3.1.4 Manganese Catalysts4.3.1.5 Iron Catalysts; 4.3.1.6 Selenium and Organocatalysts; 4.3.1.7 Hydrotalcite and Alumina Systems; 4.3.1.8 Biocatalytic Systems; 4.3.2 Vicinal Dihydroxylation; 4.3.3 Oxidative Cleavage of Olefins; 4.3.4 Oxidative Ketonization; 4.3.5 Allylic Oxidations; 4.4 Alkanes and Alkylaromatics; 4.4.1 Oxidation of Alkanes; 4.4.2 Oxidation of Aromatic Side Chains; 4.4.3 Aromatic Ring Oxidation; 4.5 Oxygen-containing Compounds; 4.5.1 Oxidation of Alcohols; 4.5.1.1 Ruthenium Catalysts; 4.5.1.2 Palladium-catalyzed Oxidations with O(2); 4.5.1.3 Gold Catalysts 4.5.1.4 Copper Catalysts |
| Record Nr. | UNINA-9910830749703321 |
Sheldon Roger A
|
||
| Weinheim, : Wiley-VCH, 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industrial Applications of Ionic Liquids / / edited by Fabrice Mutelet
| Industrial Applications of Ionic Liquids / / edited by Fabrice Mutelet |
| Pubbl/distr/stampa | London : , : IntechOpen, , 2023 |
| Descrizione fisica | 1 online resource (ix, 156 pages) : illustrations |
| Disciplina | 543 |
| Soggetto topico |
Industrial applications
Analytical chemistry |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Ionic Liquids: Applications in Rechargeable Lithium Batteries -- 2. High Ionic Conductivities of Ionic Materials as Potential Electrolytes -- 3. Application of Ionic Liquids in Rechargeable Li-Ion Batteries: A Comprehensive Guide to Design, Synthesis and Computational Aspects -- 4. Perspective Chapter: Applications of Novel Ionic Liquids as Catalyst -- 5. Iron-Based Ionic Liquids for Magnetic Resonance Imaging Application -- 6. Compatibility of Filter Materials Used with Ionic Liquids' Uses in Hydraulic Drive Control Systems and a Filterability Test -- 7. Development of Low-Friction Ion Gels for Industrial Applications. |
| Record Nr. | UNINA-9910647495003321 |
| London : , : IntechOpen, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler
| Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler |
| Autore | Wechsler Cindy |
| Pubbl/distr/stampa | Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 |
| Descrizione fisica | 1 online resource (173 pages) : illustrations, tables |
| Disciplina | 572.8 |
| Soggetto topico |
Molecular biology
Industrial applications |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-7369-4815-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910511665903321 |
Wechsler Cindy
|
||
| Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler
| Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler |
| Autore | Wechsler Cindy |
| Pubbl/distr/stampa | Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 |
| Descrizione fisica | 1 online resource (173 pages) : illustrations, tables |
| Disciplina | 572.8 |
| Soggetto topico |
Molecular biology
Industrial applications |
| ISBN | 3-7369-4815-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910794962003321 |
Wechsler Cindy
|
||
| Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler
| Intermediates in the carboligation of the ThDP-dependent pyruvate decarboxylase : Tailor-made enzyme catalysts for industrial applications / / Cindy Wechsler |
| Autore | Wechsler Cindy |
| Pubbl/distr/stampa | Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 |
| Descrizione fisica | 1 online resource (173 pages) : illustrations, tables |
| Disciplina | 572.8 |
| Soggetto topico |
Molecular biology
Industrial applications |
| ISBN | 3-7369-4815-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910820504203321 |
Wechsler Cindy
|
||
| Gottingen, [Germany] : , : Cuvillier Verlag, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Latest Research on Energy Recovery
| Latest Research on Energy Recovery |
| Autore | Vizureanu Petrica |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London : , : IntechOpen, , 2023 |
| Descrizione fisica | 1 online resource (154 pages) |
| Disciplina | 662.6 |
| Soggetto topico |
Energy conservation
Industrial applications |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Latest Research on Energy Recovery -- Contents -- Preface -- Section 1 Heat Recovery -- Chapter1 Magnetocaloric Properties in Gd Ni and Gd CoNi Systems -- Chapter2 Micro-Thermoelectric Generators: Material Synthesis, Device Fabrication, and Application Demonstration -- Chapter3 Perspective Chapter: Ultra-LowTemperature Chillers for Semiconductor Manufacturing Process -- Section 2 Nonconventional Energy Recovery -- Chapter4 Assessment of Solar Energy Potential Limits within Solids on Heating-Melting Interval -- Chapter5 TheTechnical Challenges of the GasificationTechnologies Currently in Use and Ways of Optimizing Them: A Review -- Chapter6 Green and Sustainable Chemical Looping Plasma Process for Ammonia and Hydrogen Production -- Chapter7 Energy Efficiency Improvement in Surface Mining |
| Record Nr. | UNINA-9910764190603321 |
Vizureanu Petrica
|
||
| London : , : IntechOpen, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microbial Enzymes : Production, Purification, and Industrial Applications, 2 Volume Set
| Microbial Enzymes : Production, Purification, and Industrial Applications, 2 Volume Set |
| Autore | Yadav Dinesh |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (847 pages) |
| Altri autori (Persone) |
ChowdharyPankaj
AnandGautam GaurRajarshi Kumar |
| Soggetto topico |
Microbial enzymes
Industrial applications |
| ISBN |
9783527844340
3527844341 9783527844364 3527844368 9783527844357 352784435X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Xylanases: Sources, Production, and Purification Strategies -- 1.1 Introduction -- 1.2 Sources, Production, and Purification Strategies -- 1.3 Structure -- 1.4 Xylanases as Biocatalyst -- 1.4.1 Properties Relationship of Xylanases for Hydrolysis Catalytic Reaction -- 1.4.2 Inhibition and Synergism During Hydrolysis Catalytic Reaction -- 1.4.3 Catalytic Mechanisms of Synthesis of XOS and Alkyl Glycosides -- 1.4.4 Trends of Xylanases as Biocatalyst -- 1.5 Genomics Studies on Xylanases -- 1.5.1 Expression of Xylanases -- 1.5.2 Genetic Significance -- 1.5.3 Strains Improvement -- 1.6 Xylanases as a Promising Enzyme for Industrial Applications -- 1.7 Industrial Food Applications -- 1.7.1 Bakery and Drinks -- 1.7.2 Animal Feed Industry -- 1.7.3 Pharmaceutical Industry -- 1.7.4 Bio‐bleaching of Paper Pulp Industry -- 1.7.5 Biofuel Production -- 1.7.6 Other Applications of Xylanases -- 1.8 Future Trends -- 1.9 Conclusions -- Acknowledgments -- References -- Chapter 2 Exploration of the Microbial Urease and Their Industrial Applications -- 2.1 Urease Enzyme and Its History -- 2.2 Urea Hydrolysis -- 2.3 Sources and Molecular Attributes of Urease Enzyme -- 2.4 Urease Purification -- 2.5 Applications of Urease Enzyme -- 2.5.1 Urea Biosensor for Determination of Urea Level in Dialysate -- 2.5.2 Application of Acid Urease to Reduce Urea in Commercial Wines -- 2.5.3 Microbiologically Induced Sealant for Concrete Crack Remediation -- 2.5.4 Urease Conductometric Biosensors for Detection of Heavy Metal Ions -- 2.5.5 Biomimetic Hydroxyapatite (HA) Powder Synthesis via an Enzyme Reaction of Urea with Urease -- 2.5.6 Application of Urease in Urinary Drainage Bags -- 2.6 Conclusion and Future Aspects -- References -- Chapter 3 Methane Monooxygenase Production and Its Limitations.
3.1 Introduction -- 3.2 Classes of MMO -- 3.2.1 Soluble Methane Monooxygenase (sMMO) -- 3.2.2 Particulate Methane Monooxygenase (pMMO) -- 3.3 Structure and Active Site of MMO -- 3.3.1 sMMO -- 3.3.2 pMMO -- 3.4 Mechanism of Action -- 3.4.1 Soluble MMO -- 3.4.2 Particulate MMO -- 3.5 Regulation of MMO -- 3.6 Sources of MMO -- 3.7 Genetic Engineering of MMOs -- 3.7.1 Expression in Heterologous Host -- 3.7.2 Expression in Homologous Host -- 3.8 MMO Production -- 3.8.1 Batch Culture Method -- 3.8.2 Continuous Culture Method -- 3.9 Applications of MMO and Methanotrophs -- 3.9.1 Single‐cell Protein -- 3.9.2 Isoprenoid Compounds and Carotenoid Pigments -- 3.9.3 Osmoprotectants -- 3.9.4 Lactic Acid -- 3.9.5 Methanobactin -- 3.9.6 Carbohydrates -- 3.9.7 Biopolymers -- 3.9.8 Gas‐to‐Liquid (GTL) Conversion -- 3.10 Limitations in MMO Production -- 3.11 Conclusion -- References -- Chapter 4 Polyhydroxyalkanoates: An Eco‐sustainable Development Toward a Green World -- 4.1 Introduction -- 4.2 Structure, Classification, and Properties of PHAs -- 4.3 Production and Synthesis of PHAs -- 4.4 Applications of PHAs in the Health Sector -- 4.5 Tissue Engineering -- 4.6 Bio‐implantation Patches -- 4.7 Drug Delivery -- 4.8 Surgical Applications -- 4.9 Orthopedic Applications -- 4.10 Industrial Applications of PHAs -- 4.10.1 Food Packaging -- 4.10.2 PHA as Coating Agent -- 4.10.3 Biorefinery and Biofuels -- 4.11 Agricultural Applications -- 4.12 Conclusion and Future Prospective -- Acknowledgments -- References -- Chapter 5 An Insight into Production Strategies for Microbial Pectinases: An Overview -- 5.1 Introduction -- 5.2 Microbial Pectinases -- 5.3 Microbial Pectinases: Mode of Action and Classifications -- 5.4 Sources of Microbial Pectinases -- 5.4.1 Soil -- 5.4.2 Agro‐wastes -- 5.4.3 Wastewater -- 5.5 Production of Microbial Pectinases. 5.5.1 Modes of Microbial Fermentation -- 5.6 Bioreactors‐based Production of Microbial Pectinases -- 5.6.1 Submerged Fermenters -- 5.6.2 Solid‐state Fermenters -- 5.7 Response Surface Methodology for Enhancing Production of Microbial Pectinases -- 5.8 Purification of Microbial Pectinases -- 5.9 Immobilization of Microbial Pectinases -- 5.10 Future Prospects and Conclusion -- References -- Chapter 6 Hydrocarbon‐degrading Enzymes from Mangrove‐associated Fungi and Their Applications -- 6.1 Introduction -- 6.2 Hydrocarbon Pollution -- 6.2.1 Hydrocarbons -- 6.2.2 Hydrocarbon Pollution and Management -- 6.3 Mangrove Environments -- 6.4 Mangrove‐associated Fungi as Hydrocarbon Degraders -- 6.4.1 Endophytes of the Mangrove Ecosystems -- 6.4.2 Epiphytes of the Mangrove Ecosystems -- 6.4.3 Mycorrhizas -- 6.4.4 Mangrove Sediment Fungi -- 6.5 Ligninolytic Enzymes from Mangrove‐associated Fungi -- 6.5.1 Laccase -- 6.5.2 Manganese Peroxidase -- 6.5.3 Lignin Peroxidase -- 6.6 Applications and Future Prospects -- 6.6.1 Current Applications of Ligninolytic Enzymes from Mangrove‐associated Fungi -- 6.6.2 Future Prospects in Bioremediation and Commercialization of Enzymes -- 6.7 Conclusion -- References -- Chapter 7 Industrially Important Microbial Enzymes Production and Their Applications -- 7.1 Introduction -- 7.2 Sources of Industrially Important Microbial Enzymes -- 7.2.1 Microbial Enzyme Production -- 7.2.1.1 Solid‐state Fermentation -- 7.2.1.2 Submerged Fermentation -- 7.3 Application of Microbial Enzymes in Industries -- 7.3.1 Food Industry -- 7.3.1.1 Baking Industry -- 7.3.1.2 Beverage Industry -- 7.3.1.3 Animal Feed -- 7.3.1.4 Fruit Juice Industry -- 7.3.2 Pharmaceutical (Medicine) Industries -- 7.3.3 Detergent Industries -- 7.3.4 Textile and Leather Industries -- 7.3.5 Paper and Pulp Industries -- 7.3.6 Starch Liquefaction and Saccharification. 7.3.7 Bioenergy Production -- 7.4 Challenges and Future Trends of Microbial Enzymes -- 7.5 Conclusion -- Authors' Contributions -- Acknowledgments -- References -- Chapter 8 Peroxidases: Role in Bioremediation -- 8.1 Introduction -- 8.1.1 Bioremediation Through Enzymes -- 8.1.2 Peroxidases -- 8.2 Classification of Peroxidases -- 8.3 Applications of Different Peroxidases for Environmental Pollution Management -- 8.3.1 Non‐animal Peroxidases -- 8.3.2 Enzyme‐based Peroxidases -- 8.3.3 Plant‐based Peroxidases -- 8.3.4 Microbial Peroxidases -- 8.3.5 Peroxidases of Microbial Lignin -- 8.3.6 Microorganismal Manganese Peroxidases -- 8.3.7 Microbial Adaptable Peroxidases -- 8.4 Conclusion -- Acknowledgment -- References -- Chapter 9 Microbial α‐l‐Rhamnosidase and Its Significance in Therapeutics -- 9.1 Introduction -- 9.2 Sources -- 9.3 Substrate Specificity and Optimality -- 9.4 Isolation of Microbial Strains for Producing α‐l‐Rhamnosidase Enzyme -- 9.5 Assay Method -- 9.5.1 Naringin as Substrate (Davis Method) -- 9.5.2 p‐Nitrophenyl α‐l‐Rhamnopyranoside (pnpr) as Substrate -- 9.5.3 HPLC Method for Rhamnosidases Assay -- 9.6 Purification Method -- 9.6.1 α‐l‐Rhamnosidase Purification from Bacterial Source -- 9.6.2 Purification of α‐l‐Rhamnosidase from Fungal Source -- 9.7 Biochemical Properties and Application of α‐l‐Rhamnosidase -- 9.7.1 l‐Rhamnose -- 9.7.2 Prunin -- 9.7.3 Hesperetin -- 9.7.4 Quercetin -- 9.7.5 Myricetin -- 9.8 Summary -- References -- Chapter 10 The Use of Microbial Enzymes in the Food Industries: A Global Perspective -- 10.1 Introduction -- 10.2 Global Perspective and Demand for Microbial Enzymes in the Food Industry -- 10.3 Production of Industrial Enzymes -- 10.4 Approach to Boost Properties of Microbial Enzymes -- 10.5 Microbial Enzymes in Food Industries -- 10.5.1 Dairy Industry -- 10.5.2 Bakery Industry -- 10.5.3 Beverages. 10.5.4 Meat Industry -- 10.5.5 Fish and Seafood -- 10.5.6 Vegetables and Fruits -- 10.5.7 Starch Processing Industry -- 10.6 Conclusion and Future Perspectives -- References -- Chapter 11 Alkane Hydroxylases: Sources and Applications -- 11.1 Introduction -- 11.1.1 Structure and Catalytic Mechanism of Alkane Hydroxylases -- 11.1.2 Classification of Alkane Hydroxylases -- 11.1.2.1 Short‐chain Alkane Hydroxylases -- 11.1.2.2 Medium‐chain Alkane Hydroxylases -- 11.1.2.3 Cytochrome P450 Alkane Hydroxylases -- 11.1.2.4 Long‐chain Alkane Hydroxylases (LadA) -- 11.2 Sources of Alkane Hydroxylases -- 11.2.1 Bacterial Sources -- 11.2.2 Fungal Sources -- 11.2.3 Yeast Sources -- 11.3 Production, Purification, and Characterization of Alkane Hydroxylases -- 11.4 Applications of Alkane Hydroxylases -- 11.4.1 Degradation of Hydrocarbons -- 11.4.1.1 Degradation of Short‐to‐medium Chain Length of Hydrocarbons -- 11.4.1.2 Degradation of Long‐chain n‐Alkanes -- 11.4.1.3 Degradation of Branched‐chain and Aromatic Alkanes -- 11.4.1.4 Degradation of Petroleum Pollutants -- 11.4.2 Pharmaceutical Use -- 11.4.3 DNA Damage Repair -- 11.4.4 Role of Alkane Hydroxylases in Polythene Degradation -- 11.5 Future Prospects -- 11.6 Conclusion -- References -- Chapter 12 An Overview of Production of Bacterial and Fungal Laccases and Their Industrial Applications -- 12.1 Introduction -- 12.2 Structure of Laccase -- 12.2.1 Type 1: Paramagnetic "Blue" Copper -- 12.2.2 Type 2: Paramagnetic "Nonblue/Normal" Copper -- 12.2.3 Type 3: Diamagnetic Spin‐coupled Copper-Copper Pair -- 12.3 Mode of Action -- 12.4 Sources of Laccase -- 12.5 Substrates, Mediators, and Screening of Laccases -- 12.6 Production of Bacterial Laccases -- 12.7 Production of Fungal Laccases -- 12.8 Applications of Laccases -- 12.8.1 Bioremediation and Biodegradation -- 12.8.2 Dye Decolorization. 12.8.3 Pulp and Paper Industry. |
| Record Nr. | UNINA-9911020077803321 |
Yadav Dinesh
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||