ICP Emissionsspektrometrie für Praktiker [[electronic resource] ] : Grundlagen, Methodenentwicklung, Anwendungsbeispiele / / Joachim Nölte |
Autore | Nölte Joachim |
Pubbl/distr/stampa | Weinheim [Germany], : Wiley-VCH, c2002 |
Descrizione fisica | 1 online resource (287 p.) |
Disciplina |
500
543.52 |
Soggetto topico | Inductively coupled plasma spectrometry |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-66076-3
1-280-55976-4 9786610559763 3-527-66105-0 3-527-60333-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; 1 Ein Überblick; 1.1 Analytische merkmale der icp oes; 1.2 ICP OESnomen est omen; 1.3 Verbreitung der ICP OES; 1.4 Weitere Techniken zur Elementanalytik; 1.5 Begriffe; 2 Plasma; 2.1 Das analytisch genutzte Plasma; 2.1.1 Betriebsgas; 2.1.2 Plasmafackel; 2.1.3 Zünden des Plasmas; 2.2 Anregung zur Emission von elektromagnetischer Strahlung; 2.2.1 Emissionslinien; 2.2.2 Energie und temperatur; 2.2.3 Spektroskopische Eigenschaften des ICP; 2.2.4 Plasmabeobachtung; 2.3 Hochfrequenzgenerator; 2.4 Probeneinführungssystem; 2.4.1 Zerstäuber; 2.4.2 Zerstäuberkammer
2.4.3 Pumpe2.4.4 Sonstige Formen des Probeneintrags; 3 Optik und Detektor des Spektrometers; 3.1 Optische Grundlagen; 3.1.1 Auflösung; 3.1.2 Relevante Grundbegriffe der Optik; 3.1.3 Optische Aufbauten; 3.1.4 Lichttransfer vom Plasma zur Optik; 3.2 Detektor; 3.2.1 Photomultiplier-Tube (PMT); 3.2.2 Halbleiterdetektoren; 3.3 Apparativer Aufbau eines Emissionsspektrometers; 3.3.1 Monochromatoren; 3.3.2 Polychromatoren; 3.3.3 Array-Spektrometer; 4 Methodenentwicklung; 4.1 Wellenlängenauswahl; 4.1.1 Arbeitsbereich; 4.1.2 Spektrale Störfreiheit; 4.2 Auswerte- und Korrekturtechniken 4.2.1 Signalauswertung4.2.2 Untergrundkorrektur; 4.2.3 Korrektur spektraler Störungen; 4.3 Nicht-spektrale Störungen; 4.3.1 Korrektur nicht-spektraler Störungen; 4.4 Optimierung; 4.4.1 Optimierungsziele; 4.4.2 Optimierungsparameter; 4.4.3 Optimierungsalgorithmen; 4.5 Validierung; 4.5.1 Richtigkeit und Spezifität; 4.5.2 Wiederholbarkeit; 4.5.3 Nachweisgrenze; 4.5.4 Arbeitsbereich; 4.5.5 Robustheit; 5 Routineanalyse; 5.1 Vorbereitung; 5.1.1 Probenvorbereitung; 5.1.2 Einbrennzeit; 5.1.3 Spülzeiten; 5.2 Kalibrieren; 5.2.1 Bezugslösungen; 5.2.2 Kalibrierfunktionen; 5,2.3 Bewerten der Kalibrierung 5.3 Analytische Qualitätssicherung5.4 Software und Datenbearbeitung; 6 Fehler: Ursachen finden und vermeiden; 7 Anwendungen; 7.1 Allgemeine Hinweise; 7.2 Hinweise zu einzelnen Elementen; 7.3 Ausgewählte Anwendungen; 7.3.1 Umwelt; 7.3.2 Proben biologischen Ursprungs; 7.3.3 Geologisches Material; 7.3.4 Metallurgie; 7.3.5 Materialwissenschaften; 7.3.6 Industrielle Anwendungen; 7.3.7. Organische Lösungsmittel; 8 Beschaffung und Laborvorbereitung; 8.1 Welche atomspektrometrische Technik ist geeignet?; 8.2 Welches ICP Emissionsspektrometer ist geeignet?; 8.3 Vorbereitung des Labors; 9 Literatur Stichwortverzeichnis |
Record Nr. | UNINA-9910143994003321 |
Nölte Joachim | ||
Weinheim [Germany], : Wiley-VCH, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
ICP Emissionsspektrometrie für Praktiker [[electronic resource] ] : Grundlagen, Methodenentwicklung, Anwendungsbeispiele / / Joachim Nölte |
Autore | Nölte Joachim |
Pubbl/distr/stampa | Weinheim [Germany], : Wiley-VCH, c2002 |
Descrizione fisica | 1 online resource (287 p.) |
Disciplina |
500
543.52 |
Soggetto topico | Inductively coupled plasma spectrometry |
ISBN |
3-527-66076-3
1-280-55976-4 9786610559763 3-527-66105-0 3-527-60333-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; 1 Ein Überblick; 1.1 Analytische merkmale der icp oes; 1.2 ICP OESnomen est omen; 1.3 Verbreitung der ICP OES; 1.4 Weitere Techniken zur Elementanalytik; 1.5 Begriffe; 2 Plasma; 2.1 Das analytisch genutzte Plasma; 2.1.1 Betriebsgas; 2.1.2 Plasmafackel; 2.1.3 Zünden des Plasmas; 2.2 Anregung zur Emission von elektromagnetischer Strahlung; 2.2.1 Emissionslinien; 2.2.2 Energie und temperatur; 2.2.3 Spektroskopische Eigenschaften des ICP; 2.2.4 Plasmabeobachtung; 2.3 Hochfrequenzgenerator; 2.4 Probeneinführungssystem; 2.4.1 Zerstäuber; 2.4.2 Zerstäuberkammer
2.4.3 Pumpe2.4.4 Sonstige Formen des Probeneintrags; 3 Optik und Detektor des Spektrometers; 3.1 Optische Grundlagen; 3.1.1 Auflösung; 3.1.2 Relevante Grundbegriffe der Optik; 3.1.3 Optische Aufbauten; 3.1.4 Lichttransfer vom Plasma zur Optik; 3.2 Detektor; 3.2.1 Photomultiplier-Tube (PMT); 3.2.2 Halbleiterdetektoren; 3.3 Apparativer Aufbau eines Emissionsspektrometers; 3.3.1 Monochromatoren; 3.3.2 Polychromatoren; 3.3.3 Array-Spektrometer; 4 Methodenentwicklung; 4.1 Wellenlängenauswahl; 4.1.1 Arbeitsbereich; 4.1.2 Spektrale Störfreiheit; 4.2 Auswerte- und Korrekturtechniken 4.2.1 Signalauswertung4.2.2 Untergrundkorrektur; 4.2.3 Korrektur spektraler Störungen; 4.3 Nicht-spektrale Störungen; 4.3.1 Korrektur nicht-spektraler Störungen; 4.4 Optimierung; 4.4.1 Optimierungsziele; 4.4.2 Optimierungsparameter; 4.4.3 Optimierungsalgorithmen; 4.5 Validierung; 4.5.1 Richtigkeit und Spezifität; 4.5.2 Wiederholbarkeit; 4.5.3 Nachweisgrenze; 4.5.4 Arbeitsbereich; 4.5.5 Robustheit; 5 Routineanalyse; 5.1 Vorbereitung; 5.1.1 Probenvorbereitung; 5.1.2 Einbrennzeit; 5.1.3 Spülzeiten; 5.2 Kalibrieren; 5.2.1 Bezugslösungen; 5.2.2 Kalibrierfunktionen; 5,2.3 Bewerten der Kalibrierung 5.3 Analytische Qualitätssicherung5.4 Software und Datenbearbeitung; 6 Fehler: Ursachen finden und vermeiden; 7 Anwendungen; 7.1 Allgemeine Hinweise; 7.2 Hinweise zu einzelnen Elementen; 7.3 Ausgewählte Anwendungen; 7.3.1 Umwelt; 7.3.2 Proben biologischen Ursprungs; 7.3.3 Geologisches Material; 7.3.4 Metallurgie; 7.3.5 Materialwissenschaften; 7.3.6 Industrielle Anwendungen; 7.3.7. Organische Lösungsmittel; 8 Beschaffung und Laborvorbereitung; 8.1 Welche atomspektrometrische Technik ist geeignet?; 8.2 Welches ICP Emissionsspektrometer ist geeignet?; 8.3 Vorbereitung des Labors; 9 Literatur Stichwortverzeichnis |
Record Nr. | UNINA-9910830726603321 |
Nölte Joachim | ||
Weinheim [Germany], : Wiley-VCH, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
ICP Emissionsspektrometrie für Praktiker : Grundlagen, Methodenentwicklung, Anwendungsbeispiele / / Joachim Nölte |
Autore | Nölte Joachim |
Pubbl/distr/stampa | Weinheim [Germany], : Wiley-VCH, c2002 |
Descrizione fisica | 1 online resource (287 p.) |
Disciplina |
500
543.52 |
Soggetto topico | Inductively coupled plasma spectrometry |
ISBN |
3-527-66076-3
1-280-55976-4 9786610559763 3-527-66105-0 3-527-60333-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; 1 Ein Überblick; 1.1 Analytische merkmale der icp oes; 1.2 ICP OESnomen est omen; 1.3 Verbreitung der ICP OES; 1.4 Weitere Techniken zur Elementanalytik; 1.5 Begriffe; 2 Plasma; 2.1 Das analytisch genutzte Plasma; 2.1.1 Betriebsgas; 2.1.2 Plasmafackel; 2.1.3 Zünden des Plasmas; 2.2 Anregung zur Emission von elektromagnetischer Strahlung; 2.2.1 Emissionslinien; 2.2.2 Energie und temperatur; 2.2.3 Spektroskopische Eigenschaften des ICP; 2.2.4 Plasmabeobachtung; 2.3 Hochfrequenzgenerator; 2.4 Probeneinführungssystem; 2.4.1 Zerstäuber; 2.4.2 Zerstäuberkammer
2.4.3 Pumpe2.4.4 Sonstige Formen des Probeneintrags; 3 Optik und Detektor des Spektrometers; 3.1 Optische Grundlagen; 3.1.1 Auflösung; 3.1.2 Relevante Grundbegriffe der Optik; 3.1.3 Optische Aufbauten; 3.1.4 Lichttransfer vom Plasma zur Optik; 3.2 Detektor; 3.2.1 Photomultiplier-Tube (PMT); 3.2.2 Halbleiterdetektoren; 3.3 Apparativer Aufbau eines Emissionsspektrometers; 3.3.1 Monochromatoren; 3.3.2 Polychromatoren; 3.3.3 Array-Spektrometer; 4 Methodenentwicklung; 4.1 Wellenlängenauswahl; 4.1.1 Arbeitsbereich; 4.1.2 Spektrale Störfreiheit; 4.2 Auswerte- und Korrekturtechniken 4.2.1 Signalauswertung4.2.2 Untergrundkorrektur; 4.2.3 Korrektur spektraler Störungen; 4.3 Nicht-spektrale Störungen; 4.3.1 Korrektur nicht-spektraler Störungen; 4.4 Optimierung; 4.4.1 Optimierungsziele; 4.4.2 Optimierungsparameter; 4.4.3 Optimierungsalgorithmen; 4.5 Validierung; 4.5.1 Richtigkeit und Spezifität; 4.5.2 Wiederholbarkeit; 4.5.3 Nachweisgrenze; 4.5.4 Arbeitsbereich; 4.5.5 Robustheit; 5 Routineanalyse; 5.1 Vorbereitung; 5.1.1 Probenvorbereitung; 5.1.2 Einbrennzeit; 5.1.3 Spülzeiten; 5.2 Kalibrieren; 5.2.1 Bezugslösungen; 5.2.2 Kalibrierfunktionen; 5,2.3 Bewerten der Kalibrierung 5.3 Analytische Qualitätssicherung5.4 Software und Datenbearbeitung; 6 Fehler: Ursachen finden und vermeiden; 7 Anwendungen; 7.1 Allgemeine Hinweise; 7.2 Hinweise zu einzelnen Elementen; 7.3 Ausgewählte Anwendungen; 7.3.1 Umwelt; 7.3.2 Proben biologischen Ursprungs; 7.3.3 Geologisches Material; 7.3.4 Metallurgie; 7.3.5 Materialwissenschaften; 7.3.6 Industrielle Anwendungen; 7.3.7. Organische Lösungsmittel; 8 Beschaffung und Laborvorbereitung; 8.1 Welche atomspektrometrische Technik ist geeignet?; 8.2 Welches ICP Emissionsspektrometer ist geeignet?; 8.3 Vorbereitung des Labors; 9 Literatur Stichwortverzeichnis |
Record Nr. | UNINA-9910877654403321 |
Nölte Joachim | ||
Weinheim [Germany], : Wiley-VCH, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Inductively coupled plasma spectrometry and its applications [[electronic resource] /] / edited by Steve J. Hill |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Oxford, : Blackwell, 2007 |
Descrizione fisica | 1 online resource (447 p.) |
Disciplina |
543.65
543/.65 643.65 |
Collana | Analytical chemistry |
Soggetto topico |
Inductively coupled plasma spectrometry
Inductively coupled plasma mass spectrometry |
ISBN |
1-280-74867-2
9786610748679 0-470-98879-7 9780470988794 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Inductively Coupled Plasma Spectrometry and its Applications; Contents; Contributors; Preface; 1 Introduction - A Forward-Looking Perspective; 1.1 Introduction; 1.2 Extrapolation of past and current trends; 1.2.1 Influences from science and technology; 1.2.2 Influences from society, politics, and the economy; 1.2.3 Past and current trends in atomic spectrometry; 1.3 Influence of technology transfer; 1.3.1 Electronics and data manipulation; 1.3.2 Metal-binding structures; 1.3.3 Novel separation methods; 1.3.4 Detector technologies; 1.4 Strengths and weaknesses of ICP-AES and ICP-MS
1.4.1 Strengths and weaknesses of ICP-AES1.4.2 Strengths and weaknesses of ICP-MS; 1.4.3 ICP limitations; 1.5 Potential directions in ICP spectrometry; 1.6 Concluding considerations; References; 2 Fundamental Principles of Inductively Coupled Plasmas; 2.1 Principles to inductively coupled plasma generation; 2.2 Equilibrium in a plasma; 2.3 Line intensities; 2.4 Line profiles; 2.5 Temperature definitions; 2.6 Temperature measurements; 2.6.1 Kinetic temperature measurement; 2.6.2 Rotational temperature measurement; 2.6.3 Excitation temperature; 2.6.3.1 Boltzmann plot; 2.6.3.2 Line pair method 2.6.4 Electron temperature2.7 Electron number density measurement; 2.8 Ionic to atomic line intensity ratio; 2.9 Active methods; 2.9.1 Laser-induced fluorescence; 2.9.2 Light scattering; 2.10 Spatial profiles; 2.11 Temperature and electron number densities observed in analytical ICPs; 2.12 Plasma perturbation; 2.13 Multiline diagnostics; References; 3 Basic Concepts and Instrumentation for Plasma Spectrometry; 3.1 Detection limits and sensitivity; 3.1.1 ICP-Atomic emission spectrometry; 3.1.2 Limits of detection; 3.1.3 Axial systems; 3.1.4 The sample introduction system; 3.1.5 Detectors 3.2 Accuracy and precision3.2.1 Instrumental drift; 3.2.2 Matrix effects; 3.2.3 Plasma effects; 3.2.4 Spectral effects, interferences and background correction; 3.2.5 Dynamic range; 3.2.6 ICP-MS; 3.3 Multi-element capability and selectivity; 3.4 Instrumental overview; 3.5 Radio-frequency generators; 3.6 Torches; 3.7 Spectrometers; 3.7.1 Line isolation; 3.7.2 Monochromators; 3.7.3 Polychromators; 3.8 Detectors; 3.8.1 Photomultiplier tubes; 3.8.2 Solid-state detectors; 3.9 Nebulisers and spray chambers; 3.10 Read-out devices, instrument control and data processing; 3.11 Radial and axial plasmas 3.12 Instrumentation for high-resolution spectrometry3.13 Micro-plasmas and plasma on a chip; References; 4 Aerosol Generation and Sample Transport; 4.1 Introduction; 4.2 Sample introduction characteristics of the ICP source; 4.2.1 Particle size distribution; 4.2.2 Plasma loading; 4.3 Liquid aerosol generation; 4.3.1 Pneumatic nebulization; 4.3.1.1 Pneumatic nebulizer designs; 4.3.1.2 Ultrasonic nebulizers; 4.3.1.3 Alternative nebulizer designs; 4.3.2 Spray chambers; 4.3.2.1 Mode of operation; 4.3.2.2 Practical designs of spray chambers; 4.3.2.3 Desolvation; 4.3.3 Chromatographic interfaces 4.4 Vapour generation |
Record Nr. | UNISA-996213067903316 |
Oxford, : Blackwell, 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Inductively coupled plasma spectrometry and its applications [[electronic resource] /] / edited by Steve J. Hill |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Oxford, : Blackwell, 2007 |
Descrizione fisica | 1 online resource (447 p.) |
Disciplina |
543.65
543/.65 643.65 |
Collana | Analytical chemistry |
Soggetto topico |
Inductively coupled plasma spectrometry
Inductively coupled plasma mass spectrometry |
ISBN |
1-280-74867-2
9786610748679 0-470-98879-7 9780470988794 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Inductively Coupled Plasma Spectrometry and its Applications; Contents; Contributors; Preface; 1 Introduction - A Forward-Looking Perspective; 1.1 Introduction; 1.2 Extrapolation of past and current trends; 1.2.1 Influences from science and technology; 1.2.2 Influences from society, politics, and the economy; 1.2.3 Past and current trends in atomic spectrometry; 1.3 Influence of technology transfer; 1.3.1 Electronics and data manipulation; 1.3.2 Metal-binding structures; 1.3.3 Novel separation methods; 1.3.4 Detector technologies; 1.4 Strengths and weaknesses of ICP-AES and ICP-MS
1.4.1 Strengths and weaknesses of ICP-AES1.4.2 Strengths and weaknesses of ICP-MS; 1.4.3 ICP limitations; 1.5 Potential directions in ICP spectrometry; 1.6 Concluding considerations; References; 2 Fundamental Principles of Inductively Coupled Plasmas; 2.1 Principles to inductively coupled plasma generation; 2.2 Equilibrium in a plasma; 2.3 Line intensities; 2.4 Line profiles; 2.5 Temperature definitions; 2.6 Temperature measurements; 2.6.1 Kinetic temperature measurement; 2.6.2 Rotational temperature measurement; 2.6.3 Excitation temperature; 2.6.3.1 Boltzmann plot; 2.6.3.2 Line pair method 2.6.4 Electron temperature2.7 Electron number density measurement; 2.8 Ionic to atomic line intensity ratio; 2.9 Active methods; 2.9.1 Laser-induced fluorescence; 2.9.2 Light scattering; 2.10 Spatial profiles; 2.11 Temperature and electron number densities observed in analytical ICPs; 2.12 Plasma perturbation; 2.13 Multiline diagnostics; References; 3 Basic Concepts and Instrumentation for Plasma Spectrometry; 3.1 Detection limits and sensitivity; 3.1.1 ICP-Atomic emission spectrometry; 3.1.2 Limits of detection; 3.1.3 Axial systems; 3.1.4 The sample introduction system; 3.1.5 Detectors 3.2 Accuracy and precision3.2.1 Instrumental drift; 3.2.2 Matrix effects; 3.2.3 Plasma effects; 3.2.4 Spectral effects, interferences and background correction; 3.2.5 Dynamic range; 3.2.6 ICP-MS; 3.3 Multi-element capability and selectivity; 3.4 Instrumental overview; 3.5 Radio-frequency generators; 3.6 Torches; 3.7 Spectrometers; 3.7.1 Line isolation; 3.7.2 Monochromators; 3.7.3 Polychromators; 3.8 Detectors; 3.8.1 Photomultiplier tubes; 3.8.2 Solid-state detectors; 3.9 Nebulisers and spray chambers; 3.10 Read-out devices, instrument control and data processing; 3.11 Radial and axial plasmas 3.12 Instrumentation for high-resolution spectrometry3.13 Micro-plasmas and plasma on a chip; References; 4 Aerosol Generation and Sample Transport; 4.1 Introduction; 4.2 Sample introduction characteristics of the ICP source; 4.2.1 Particle size distribution; 4.2.2 Plasma loading; 4.3 Liquid aerosol generation; 4.3.1 Pneumatic nebulization; 4.3.1.1 Pneumatic nebulizer designs; 4.3.1.2 Ultrasonic nebulizers; 4.3.1.3 Alternative nebulizer designs; 4.3.2 Spray chambers; 4.3.2.1 Mode of operation; 4.3.2.2 Practical designs of spray chambers; 4.3.2.3 Desolvation; 4.3.3 Chromatographic interfaces 4.4 Vapour generation |
Record Nr. | UNINA-9910830850603321 |
Oxford, : Blackwell, 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Inductively coupled plasma spectrometry and its applications [[electronic resource] /] / edited by Stephen J. Hill |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Oxford, : Blackwell, 2006 |
Descrizione fisica | 1 online resource (447 p.) |
Disciplina |
543.65
543/.65 643.65 |
Altri autori (Persone) | HillStephen J |
Collana | Analytical chemistry |
Soggetto topico |
Inductively coupled plasma spectrometry
Inductively coupled plasma mass spectrometry |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-74867-2
9786610748679 0-470-98879-7 1-4051-7258-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Inductively Coupled Plasma Spectrometry and its Applications; Contents; Contributors; Preface; 1 Introduction - A Forward-Looking Perspective; 1.1 Introduction; 1.2 Extrapolation of past and current trends; 1.2.1 Influences from science and technology; 1.2.2 Influences from society, politics, and the economy; 1.2.3 Past and current trends in atomic spectrometry; 1.3 Influence of technology transfer; 1.3.1 Electronics and data manipulation; 1.3.2 Metal-binding structures; 1.3.3 Novel separation methods; 1.3.4 Detector technologies; 1.4 Strengths and weaknesses of ICP-AES and ICP-MS
1.4.1 Strengths and weaknesses of ICP-AES1.4.2 Strengths and weaknesses of ICP-MS; 1.4.3 ICP limitations; 1.5 Potential directions in ICP spectrometry; 1.6 Concluding considerations; References; 2 Fundamental Principles of Inductively Coupled Plasmas; 2.1 Principles to inductively coupled plasma generation; 2.2 Equilibrium in a plasma; 2.3 Line intensities; 2.4 Line profiles; 2.5 Temperature definitions; 2.6 Temperature measurements; 2.6.1 Kinetic temperature measurement; 2.6.2 Rotational temperature measurement; 2.6.3 Excitation temperature; 2.6.3.1 Boltzmann plot; 2.6.3.2 Line pair method 2.6.4 Electron temperature2.7 Electron number density measurement; 2.8 Ionic to atomic line intensity ratio; 2.9 Active methods; 2.9.1 Laser-induced fluorescence; 2.9.2 Light scattering; 2.10 Spatial profiles; 2.11 Temperature and electron number densities observed in analytical ICPs; 2.12 Plasma perturbation; 2.13 Multiline diagnostics; References; 3 Basic Concepts and Instrumentation for Plasma Spectrometry; 3.1 Detection limits and sensitivity; 3.1.1 ICP-Atomic emission spectrometry; 3.1.2 Limits of detection; 3.1.3 Axial systems; 3.1.4 The sample introduction system; 3.1.5 Detectors 3.2 Accuracy and precision3.2.1 Instrumental drift; 3.2.2 Matrix effects; 3.2.3 Plasma effects; 3.2.4 Spectral effects, interferences and background correction; 3.2.5 Dynamic range; 3.2.6 ICP-MS; 3.3 Multi-element capability and selectivity; 3.4 Instrumental overview; 3.5 Radio-frequency generators; 3.6 Torches; 3.7 Spectrometers; 3.7.1 Line isolation; 3.7.2 Monochromators; 3.7.3 Polychromators; 3.8 Detectors; 3.8.1 Photomultiplier tubes; 3.8.2 Solid-state detectors; 3.9 Nebulisers and spray chambers; 3.10 Read-out devices, instrument control and data processing; 3.11 Radial and axial plasmas 3.12 Instrumentation for high-resolution spectrometry3.13 Micro-plasmas and plasma on a chip; References; 4 Aerosol Generation and Sample Transport; 4.1 Introduction; 4.2 Sample introduction characteristics of the ICP source; 4.2.1 Particle size distribution; 4.2.2 Plasma loading; 4.3 Liquid aerosol generation; 4.3.1 Pneumatic nebulization; 4.3.1.1 Pneumatic nebulizer designs; 4.3.1.2 Ultrasonic nebulizers; 4.3.1.3 Alternative nebulizer designs; 4.3.2 Spray chambers; 4.3.2.1 Mode of operation; 4.3.2.2 Practical designs of spray chambers; 4.3.2.3 Desolvation; 4.3.3 Chromatographic interfaces 4.4 Vapour generation |
Record Nr. | UNINA-9910143319103321 |
Oxford, : Blackwell, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Inductively coupled plasma spectrometry and its applications / / edited by Stephen J. Hill |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Oxford, : Blackwell, 2006 |
Descrizione fisica | 1 online resource (447 p.) |
Disciplina | 643.65 |
Altri autori (Persone) | HillStephen J |
Collana | Analytical chemistry |
Soggetto topico |
Inductively coupled plasma spectrometry
Inductively coupled plasma mass spectrometry |
ISBN |
1-280-74867-2
9786610748679 0-470-98879-7 9780470988794 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Inductively Coupled Plasma Spectrometry and its Applications; Contents; Contributors; Preface; 1 Introduction - A Forward-Looking Perspective; 1.1 Introduction; 1.2 Extrapolation of past and current trends; 1.2.1 Influences from science and technology; 1.2.2 Influences from society, politics, and the economy; 1.2.3 Past and current trends in atomic spectrometry; 1.3 Influence of technology transfer; 1.3.1 Electronics and data manipulation; 1.3.2 Metal-binding structures; 1.3.3 Novel separation methods; 1.3.4 Detector technologies; 1.4 Strengths and weaknesses of ICP-AES and ICP-MS
1.4.1 Strengths and weaknesses of ICP-AES1.4.2 Strengths and weaknesses of ICP-MS; 1.4.3 ICP limitations; 1.5 Potential directions in ICP spectrometry; 1.6 Concluding considerations; References; 2 Fundamental Principles of Inductively Coupled Plasmas; 2.1 Principles to inductively coupled plasma generation; 2.2 Equilibrium in a plasma; 2.3 Line intensities; 2.4 Line profiles; 2.5 Temperature definitions; 2.6 Temperature measurements; 2.6.1 Kinetic temperature measurement; 2.6.2 Rotational temperature measurement; 2.6.3 Excitation temperature; 2.6.3.1 Boltzmann plot; 2.6.3.2 Line pair method 2.6.4 Electron temperature2.7 Electron number density measurement; 2.8 Ionic to atomic line intensity ratio; 2.9 Active methods; 2.9.1 Laser-induced fluorescence; 2.9.2 Light scattering; 2.10 Spatial profiles; 2.11 Temperature and electron number densities observed in analytical ICPs; 2.12 Plasma perturbation; 2.13 Multiline diagnostics; References; 3 Basic Concepts and Instrumentation for Plasma Spectrometry; 3.1 Detection limits and sensitivity; 3.1.1 ICP-Atomic emission spectrometry; 3.1.2 Limits of detection; 3.1.3 Axial systems; 3.1.4 The sample introduction system; 3.1.5 Detectors 3.2 Accuracy and precision3.2.1 Instrumental drift; 3.2.2 Matrix effects; 3.2.3 Plasma effects; 3.2.4 Spectral effects, interferences and background correction; 3.2.5 Dynamic range; 3.2.6 ICP-MS; 3.3 Multi-element capability and selectivity; 3.4 Instrumental overview; 3.5 Radio-frequency generators; 3.6 Torches; 3.7 Spectrometers; 3.7.1 Line isolation; 3.7.2 Monochromators; 3.7.3 Polychromators; 3.8 Detectors; 3.8.1 Photomultiplier tubes; 3.8.2 Solid-state detectors; 3.9 Nebulisers and spray chambers; 3.10 Read-out devices, instrument control and data processing; 3.11 Radial and axial plasmas 3.12 Instrumentation for high-resolution spectrometry3.13 Micro-plasmas and plasma on a chip; References; 4 Aerosol Generation and Sample Transport; 4.1 Introduction; 4.2 Sample introduction characteristics of the ICP source; 4.2.1 Particle size distribution; 4.2.2 Plasma loading; 4.3 Liquid aerosol generation; 4.3.1 Pneumatic nebulization; 4.3.1.1 Pneumatic nebulizer designs; 4.3.1.2 Ultrasonic nebulizers; 4.3.1.3 Alternative nebulizer designs; 4.3.2 Spray chambers; 4.3.2.1 Mode of operation; 4.3.2.2 Practical designs of spray chambers; 4.3.2.3 Desolvation; 4.3.3 Chromatographic interfaces 4.4 Vapour generation |
Record Nr. | UNINA-9910877792103321 |
Oxford, : Blackwell, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Practical inductively coupled plasma spectrometry / / John R. Dean |
Autore | Dean John R. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , 2019 |
Descrizione fisica | 1 online resource (249 pages) |
Disciplina | 543/.65 |
Soggetto topico | Inductively coupled plasma spectrometry |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-47874-X
1-119-47877-4 1-119-47866-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | The analytical approach -- Sampling and storage -- Sample preparation -- Sample introduction -- The inductively coupled plasma -- Inductively coupled plasma-atomic emission spectroscopy -- Inductively coupled plasma-mass spectrometry -- Inductively coupled plasma: current and future developments -- Inductively coupled plasma: troubleshooting and maintenance. |
Record Nr. | UNINA-9910554803103321 |
Dean John R. | ||
Hoboken, NJ : , : Wiley, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Practical inductively coupled plasma spectrometry / / John R. Dean |
Autore | Dean John R. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , 2019 |
Descrizione fisica | 1 online resource (249 pages) |
Disciplina | 543/.65 |
Soggetto topico | Inductively coupled plasma spectrometry |
ISBN |
1-119-47874-X
1-119-47877-4 1-119-47866-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | The analytical approach -- Sampling and storage -- Sample preparation -- Sample introduction -- The inductively coupled plasma -- Inductively coupled plasma-atomic emission spectroscopy -- Inductively coupled plasma-mass spectrometry -- Inductively coupled plasma: current and future developments -- Inductively coupled plasma: troubleshooting and maintenance. |
Record Nr. | UNINA-9910829873603321 |
Dean John R. | ||
Hoboken, NJ : , : Wiley, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|