Formulas for mechanical and structural shock and impact / / Gregory Szuladzinski
| Formulas for mechanical and structural shock and impact / / Gregory Szuladzinski |
| Autore | Szuladzinski Gregory <1940, > |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , 2010 |
| Descrizione fisica | 1 online resource (792 p.) |
| Disciplina | 624.1/76 |
| Soggetto topico |
Impact - Mathematical models
Shock (Mechanics) - Mathematical models Engineering mathematics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-5231-3466-6
0-429-13723-0 1-282-30400-3 9786612304002 1-4200-6557-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front cover; Contents; Preface; Introduction; Author; Symbols and Abbreviations (General); Chapter 1. Concepts and Definitions; Chapter 2. Natural Frequency; Chapter 3. Simple Linear Systems; Chapter 4. Simple Nonlinear Systems; Chapter 5. Wave Propagation; Chapter 6. Yield and Failure Criteria; Chapter 7. Impact; Chapter 8. Collision; Chapter 9. Cables and Strings; Chapter 10. Beams; Chapter 11. Columns and Beam-Columns; Chapter 12. Plates and Shells; Chapter 13. Dynamic Effects of Explosion; Chapter 14. Penetration and Perforation; Chapter 15. Damage, Failure, and Fragmentation
Chapter 16. Selected ExamplesAppendix A Mohr Circles; Appendix B Shortcuts and Approximations; Appendix C Aerodynamic Drag Coefficients; Appendix D Lamé Equations; References; Index; Back cover |
| Record Nr. | UNINA-9910455091003321 |
Szuladzinski Gregory <1940, >
|
||
| Boca Raton : , : CRC Press, , 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Formulas for mechanical and structural shock and impact / / Gregory Szuladzinski
| Formulas for mechanical and structural shock and impact / / Gregory Szuladzinski |
| Autore | Szuladzinski Gregory <1940, > |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , 2010 |
| Descrizione fisica | 1 online resource (792 p.) |
| Disciplina | 624.1/76 |
| Soggetto topico |
Impact - Mathematical models
Shock (Mechanics) - Mathematical models Engineering mathematics |
| ISBN |
1-5231-3466-6
0-429-13723-0 1-282-30400-3 9786612304002 1-4200-6557-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front cover; Contents; Preface; Introduction; Author; Symbols and Abbreviations (General); Chapter 1. Concepts and Definitions; Chapter 2. Natural Frequency; Chapter 3. Simple Linear Systems; Chapter 4. Simple Nonlinear Systems; Chapter 5. Wave Propagation; Chapter 6. Yield and Failure Criteria; Chapter 7. Impact; Chapter 8. Collision; Chapter 9. Cables and Strings; Chapter 10. Beams; Chapter 11. Columns and Beam-Columns; Chapter 12. Plates and Shells; Chapter 13. Dynamic Effects of Explosion; Chapter 14. Penetration and Perforation; Chapter 15. Damage, Failure, and Fragmentation
Chapter 16. Selected ExamplesAppendix A Mohr Circles; Appendix B Shortcuts and Approximations; Appendix C Aerodynamic Drag Coefficients; Appendix D Lamé Equations; References; Index; Back cover |
| Record Nr. | UNINA-9910778418703321 |
Szuladzinski Gregory <1940, >
|
||
| Boca Raton : , : CRC Press, , 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
| Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque |
| Autore | Bastien Jérôme |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (514 p.) |
| Disciplina | 620.00151539 |
| Altri autori (Persone) |
BernardinFrédéric
LamarqueClaude-Henri |
| Collana | Mechanical engineering and solid mechanics series |
| Soggetto topico |
Dynamics - Mathematical models
Friction - Mathematical models Impact - Mathematical models |
| ISBN |
1-118-60408-3
1-118-60404-0 1-299-40244-5 1-118-60432-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one) 2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme 3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction 5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations 5.3.5. Free oscillations |
| Record Nr. | UNINA-9910139032503321 |
Bastien Jérôme
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
| Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque |
| Autore | Bastien Jérôme |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (514 p.) |
| Disciplina | 620.00151539 |
| Altri autori (Persone) |
BernardinFrédéric
LamarqueClaude-Henri |
| Collana | Mechanical engineering and solid mechanics series |
| Soggetto topico |
Dynamics - Mathematical models
Friction - Mathematical models Impact - Mathematical models |
| ISBN |
9781118604083
1118604083 9781118604045 1118604040 9781299402447 1299402445 9781118604328 1118604326 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one) 2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme 3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction 5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations 5.3.5. Free oscillations |
| Record Nr. | UNINA-9910818175103321 |
Bastien Jérôme
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||