Advanced imaging and bio techniques for convergence science / / Jun Ki Kim, Jeong Kon Kim, Chan-Gi Pack, editors
| Advanced imaging and bio techniques for convergence science / / Jun Ki Kim, Jeong Kon Kim, Chan-Gi Pack, editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (560 pages) |
| Disciplina | 616.0754 |
| Collana | Advances in Experimental Medicine and Biology |
| Soggetto topico |
Imaging systems in medicine
Medical microscopy Medicine - Research Microscòpia de fluorescència Imatges mèdiques |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-336-064-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910483758503321 |
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in brain imaging techniques / / edited by Nirmal Mazumder, Gireesh Gangadharan, Yury V. Kistenev
| Advances in brain imaging techniques / / edited by Nirmal Mazumder, Gireesh Gangadharan, Yury V. Kistenev |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (265 pages) |
| Disciplina | 616.804754 |
| Soggetto topico |
Brain - Imaging
Neurologia Imatges mèdiques |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-19-1352-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1: Optical Coherence Tomography in Brain Gliomas Detection and Peritumoral White Matter State Evaluation -- 1.1 Introduction -- 1.2 Visual and Quantitative Evaluation of OCT Data Obtained in Brain Tumors -- 1.3 OCT Images of White Matter, Cortex, and Brain Tumors -- 1.4 Identification of Tissue Type in Brain Gliomas Using OCT -- 1.4.1 Differentiation of Tumor and White Matter -- 1.4.2 Differentiation of Tumor and Gray Matter -- 1.5 OCT for Stereotactic Biopsy -- 1.6 Determination of Myelination State of White Matter by OCT -- 1.7 Artificial Intelligence and Machine Learning Application for OCT Images Classification -- 1.8 Conclusions -- References -- 2: Two Photon Fluorescence Lifetime Imaging of Reduced Nicotinamide Adenine Dinucleotide in Brain Research -- 2.1 Introduction -- 2.2 Instrumentation -- 2.2.1 Fluorescence Lifetime Measurement -- 2.3 NADH Biogenesis -- 2.3.1 NADH Biosynthesis Pathway -- 2.4 NADH Autofluorescence and Lifetime -- 2.5 Applications -- 2.6 Conclusion -- References -- 3: Types of Raman Scattering Techniques for Neurodegenerative Diseases -- 3.1 Introduction -- 3.2 Raman Techniques -- 3.2.1 Raman Spectroscopy -- 3.2.2 Surface-Enhanced Raman Spectroscopy (SERS) -- 3.2.3 Spontaneous Raman Microscopy -- 3.2.4 Coherent Anti-Stokes Raman Scattering (CARS) Microscopy -- 3.2.5 Stimulated Raman Scattering (SRS) Microscopy -- 3.2.6 Hyperspectral Raman Imaging -- 3.3 Conclusions -- References -- 4: Drosophila Brain Advanced Multiphoton Imaging -- 4.1 Introduction: Drosophila as an Animal Model for Brain Analysis -- 4.2 Functional Multiphoton Microscopy of the Drosophila Brain -- 4.2.1 Depth -- 4.2.2 High-Speed Volumetric Imaging -- 4.2.3 Functional Connectome -- 4.3 Adaptive Optics Multiphoton Microscopy for 3D Imaging Improvement.
4.4 Adaptive Optics Procedure for Drosophila Brain Enhanced Imaging -- 4.5 Conclusions -- References -- 5: Myelin Imaging -- 5.1 Myelin -- 5.2 Traditional Methods: Electron Microscopy, Immunohistochemistry, and Fluorescence Microscopy -- 5.3 Nonlinear Optics Solutions -- 5.4 Novel Solutions for Optical Microscopy -- 5.5 X-Rays -- References -- 6: Brainbow: Principle, Technique, and Applications -- 6.1 Introduction -- 6.2 Principle: Biology of Brainbow -- 6.3 Techniques Used in Brainbow -- 6.4 Brain Tissue Optical Clearing -- 6.5 Applications -- 6.5.1 Connectome Mapping -- 6.5.1.1 Mice -- 6.5.1.2 Drosophila -- 6.5.1.3 Zebrafish -- 6.5.2 Developmental Biology -- 6.5.3 Deciphering Neural Heterogenicity -- 6.5.4 Lineage Tracing in Developing Embryos -- 6.5.5 Neural Diseases and Disorders -- 6.6 Conclusion -- References -- 7: Photoacoustic Imaging of Brain -- 7.1 Introduction -- 7.1.1 Types of PA Instruments -- 7.2 Instrumentation -- 7.3 Photoacoustic Brain Disorders Imaging -- 7.3.1 Neurodegenerative Disease Studies -- 7.3.2 Ischemic Stroke Studies -- 7.3.3 Spinal Cord Injury Studies -- 7.3.4 Epilepsy Studies -- 7.3.5 Brain Tumors Detection -- 7.4 Conclusion -- References -- 8: Photodynamic Therapy of Brain Diseases -- 8.1 Introduction -- 8.2 Singlet Oxygen Generation in Living Cells -- 8.3 PDT of Brain Tumors -- 8.4 PDT and the Blood-Brain Barrier (BBB) Permeability -- 8.5 PDT-Induced Opening of the BBB and the Meningeal Lymphatic System -- 8.6 PDT for Preclinical Study of Stroke -- 8.7 Enhancement of Light Delivery to the Brain -- 8.8 Conclusion and Perspectives -- References -- 9: Advanced Magnetic Resonance Imaging (MRI) of Brain -- 9.1 Introduction -- 9.2 Basic Principle -- 9.3 Various MR Sequences -- 9.3.1 T1 Weighted Images (T1WI) -- 9.3.2 T2 Weighted Images (T2WI) -- 9.3.3 Fluid Attenuation Inversion Recovery (FLAIR) Sequence. 9.3.4 Diffusion Weighted Imaging (DWI) -- 9.3.5 Susceptibility Weighted Imaging (SWI) -- 9.3.6 MR Perfusion Imaging -- 9.3.6.1 Dynamic Susceptibility Contrast (DSC) MR Perfusion -- 9.3.6.2 Dynamic Contrast Enhanced (DCE) MR Perfusion -- 9.3.6.3 Arterial Spin Labelling (ASL) -- 9.3.6.4 Uses -- 9.3.7 Magnetic Resonance Spectroscopy (MRS) -- 9.3.8 Diffusion Tensor Imaging (DTI) -- 9.3.8.1 Uses -- 9.3.9 Functional MRI (fMRI) -- 9.4 Conclusion -- References -- 10: Indirect Imaging -- 10.1 Introduction -- 10.2 Immunohistochemistry (IHC) -- 10.3 Flow Cytometry -- 10.4 Enzyme-Linked Immunosorbent Assay (ELISA) -- 10.5 Next-Generation Sequencing (NGS) -- 10.6 Atomic Force Microscopy -- 10.7 Nuclear Magnetic Resonance (NMR) -- 10.8 Chromatography/Mass Spectrometry -- 10.9 Spectroscopy Using Electromagnetic Waves -- 10.10 Summary -- References -- 11: Multimodal Noninvasive Imaging Strategies for Clinically Monitoring Degenerative Disorders of the Brain -- 11.1 Introduction -- 11.2 Common Noninvasive Neuroimaging Modalities -- 11.3 Characterizing Neurodegeneration Using Noninvasive Imaging -- 11.3.1 Volumetry -- 11.3.2 Cortical Thickness -- 11.3.3 Specific Signature Changes in Different Disorders -- 11.4 Quantitative Parameters for Clinical Evaluation by Imaging -- 11.4.1 Ratio of Midbrain to Pons Area -- 11.4.2 Magnetic Resonance Parkinsonism Index (MRPI) -- 11.4.3 Modified Parkinsonism Index -- 11.4.4 Ratio of Intercaudate Distance to Inner Table Width -- 11.4.5 Anterior Ventricle-Intercaudate Ratio -- 11.5 Grading System for Evaluating Neural Degeneration Using Structural Imaging -- 11.5.1 Fazekas Scale -- 11.5.2 Global Cortical Atrophy (GCA) Scale -- 11.5.3 Scheltens´s Scale or Medial Temporal Lobe Atrophy (MTA) Score -- 11.5.4 Posterior Atrophy Score -- 11.6 Functional Mapping (fMRI) -- 11.7 Diffusion Tensor Imaging (DTI) and Neural Fiber Connectivity. 11.8 Vascular Dynamics: Arterial Spin Labeling -- 11.9 Dementia Imaging Matrix Parameters -- 11.10 Emerging Technique of Neuroimaging Genomics to Assess Brain Disorders -- 11.11 Conclusion -- References -- 12: Machine Learning Approach in Brain Imaging -- 12.1 Introduction -- 12.2 Brain Optical Imaging -- 12.3 Magnetic Resonance Imaging -- 12.3.1 MRI Modalities -- 12.3.2 MRI Image Preprocessing -- 12.3.2.1 Denoising -- 12.3.2.2 Inhomogeneity Correction -- 12.3.2.3 Skull-Stripping -- 12.3.2.4 Registration -- 12.3.2.5 Intensity Standardization -- 12.3.2.6 De-oblique -- 12.3.2.7 Re-orientation -- 12.3.2.8 Motion Compensation -- 12.4 Brain Pathologies -- 12.4.1 Brain Tumors -- 12.4.2 Disorders of Consciousness -- 12.4.3 Autism Spectrum Disorder -- 12.4.4 Alzheimer´s Disease -- 12.4.5 Multiple Sclerosis -- 12.4.6 Parkinson´s Disease -- References -- 13: Transgenic Brain Mapping Techniques in Drosophila melanogaster -- 13.1 Introduction -- 13.2 Brain Mapping Techniques in Drosophila -- 13.3 FLP/FRT System -- 13.4 Mosaic Analysis with Repressible Cell Marker (MARCM) System -- 13.5 Optic Lobe in Drosophila melanogaster -- 13.6 Neurotransmitter System in Insects -- 13.7 GABA-Mediated Inhibitory Neurons in the Visual System -- 13.8 Acetylcholine-Mediated Excitatory Neurons in the Visual System -- References -- 14: Behavioural Phenotyping to Study Cognitive and Non-cognitive Symptoms in the Rodent Model of Alzheimer´s Disease -- 14.1 Introduction -- 14.2 Spatial Memory Tasks -- 14.2.1 Morris Water Maze -- 14.2.2 Radial Arm Maze -- 14.2.3 Y-Maze -- 14.2.4 T-Maze -- 14.2.5 Object Recognition Test -- 14.2.6 Object Location Test -- 14.3 Anxiety -- 14.3.1 Open Field Test -- 14.3.2 Light/Dark (LD) Test -- 14.3.3 Elevated Plus Maze (EPM) -- 14.4 Social Behaviour -- 14.4.1 Three Chamber Test -- 14.4.2 Social Recognition Test -- 14.4.3 Five Trial Social Memory Assay. 14.5 Apathy -- 14.5.1 Burrowing Test -- 14.5.2 Nest Building Test -- 14.6 Aggression -- 14.6.1 Resident-Intruder Test -- 14.7 Depression -- 14.7.1 Forced Swim Test -- 14.7.2 Tail Suspension Test -- 14.7.3 Sucrose Preference Test -- 14.8 Conclusion -- References. |
| Record Nr. | UNINA-9910574046203321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Ocular Imaging in Glaucoma / / edited by Rohit Varma, Benjamin Y. Xu, Grace M. Richter, Alena Reznik
| Advances in Ocular Imaging in Glaucoma / / edited by Rohit Varma, Benjamin Y. Xu, Grace M. Richter, Alena Reznik |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (X, 127 p. 61 illus., 53 illus. in color.) |
| Disciplina |
617.7
617.741 |
| Collana | Essentials in Ophthalmology |
| Soggetto topico |
Ophthalmology
Glaucoma Diagnòstic per la imatge Imatges mèdiques Oftalmologia |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-43847-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Anterior Segment Optical Coherence Tomography -- 2. Utilizing Optical Coherence Tomography in Glaucoma Management -- 3. Macular Imaging by Optical Coherence Tomography for Glaucoma -- 4. OCTA in Glaucoma -- 5. Examination of the Optic Nerve in Glaucoma -- 6. Ultrasound in the Management of Glaucoma -- 7. Imaging Aqueous Outflow -- 8. Future Novel Imaging Methods. |
| Record Nr. | UNINA-9910411943403321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Atlas of chest imaging in COVID-19 patients / / Jinxin Liu, Xiaoping Tang, Chunliang Lei, editors
| Atlas of chest imaging in COVID-19 patients / / Jinxin Liu, Xiaoping Tang, Chunliang Lei, editors |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XII, 192 p. 165 illus., 6 illus. in color.) |
| Disciplina | 617.540754 |
| Soggetto topico |
Chest - Imaging
COVID-19 Imatges mèdiques |
| Soggetto genere / forma |
Atles (Científic)
Llibres electrònics |
| ISBN | 981-16-1082-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Overview of COVID-19 Pneumonia -- Common CT Features of COVID-19 Pneumonia -- CT Features of Early COVID-19 Pneumonia (PCR-positive) -- CT features of intermediate stage of COVID-19 Pneumonia -- CT Features of late stage of COVID-19 Pneumonia -- Chest Features of Severe and Critical Patients with COVID-19 Pneumonia -- Role of CT and CT features of Suspected COVID-19 Patients (PCR negative) -- Follow-up CT of Patients with First Negative CT but Positive PCR for COVID-19 -- Imaging Analysis of Family Clustering -- Residual CT Features in Recovery stage of COVID-19 Pneumonia. |
| Record Nr. | UNINA-9910483011603321 |
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Atlas of imaging in cardio-oncology : case-based study guide / / Richard M. Steingart, Jennifer E. Liu, editors
| Atlas of imaging in cardio-oncology : case-based study guide / / Richard M. Steingart, Jennifer E. Liu, editors |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XIV, 316 p. 301 illus., 259 illus. in color.) |
| Disciplina | 616.120754 |
| Soggetto topico |
Heart - Imaging
Cancer - Imaging Cancer - Treatment - Complications Imatges mèdiques Cardiologia |
| Soggetto genere / forma |
Atles (Científic)
Llibres electrònics |
| ISBN | 3-030-70998-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Multimodality Imaging in Cardio-Oncology -- Anthracycline/Trastuzumab Cardiac Toxicity -- Immune Checkpoint Inhibitor (ICI)-Associated Myocarditis -- Cardiovascular Events After Chimeric Antigen Receptor T-Cell Therapy -- Introduction to Tyrosine Kinase Inhibitors: Pazopanib Cardiotoxicity -- Tyrosine Kinase Inhibitors: Arrhythmias and Coagulopathy -- Vascular Toxicity of Tyrosine Kinase Inhibitors: Peripheral Vascular and Coronary Artery Disease -- Vascular Toxicity of Tyrosine Kinase Inhibitors: Coronary Artery Disease -- Vascular Toxicity of Tyrosine Kinase Inhibitors: Pulmonary Hypertension -- Cardiovascular Toxicities of Proteasome Inhibitors -- Cardiac Complications of 5-Flourouracil (5FU) and Capecitabine Therapy -- Cisplatin and Carboplatin -- Cardiac Risk Assessment Prior to Hematopoietic Stem Cell Transplantation: Cases and Management Strategies -- The Role of Myocardial Perfusion Imaging in Cardiac Clearance of Cancer Patients -- Perioperative Management of the Cancer Patient -- Masses Involving the Heart and Vasculature -- Carcinoid Heart Disease -- Cardiac Amyloidosis -- Stress-induced Cardiomyopathy -- Arterial Thrombosis: Marantic Endocarditis -- Pericardial Effusion, Tamponade, and Constrictive Pericarditis -- Introduction to the Cardiac Implications of Radiotherapy -- Cardio-Oncologists’ Perspective on the Cardiac Implications of Radiotherapy: Complex Cases of Radiation-related Valvular and Vascular Disease -- Radiation-related Coronary and Conduction System Disease -- Radiation Injury to the Heart, Great Vessels, and Their Branches -- Cardiac Constriction and Restriction After Chest Radiotherapy for Hodgkin’s Lymphoma and Breast Cancer -- Onset of Heart Failure After Anthracycline Therapy in the Adult: Treatment and Expectations for Recovery -- Heart Failure in Long-term Survivors of Childhood or Adolescent Cancers -- Health Care Disparities in Cardio-Oncology -- Cardio-Oncology Practice in the Community -- Cardio-Oncology in the COVID-19 Era -- Acute Cardiac Care of Cancer Patients. . |
| Record Nr. | UNINA-9910495171003321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic knowledge of medical imaging informatics : undergraduate level and level I / / Peter M. A. van Ooijen, editor
| Basic knowledge of medical imaging informatics : undergraduate level and level I / / Peter M. A. van Ooijen, editor |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (103 pages) |
| Disciplina | 616.0754 |
| Collana | Imaging Informatics for Healthcare Professionals |
| Soggetto topico |
Radiology
Medical informatics Imatges mèdiques Informàtica mèdica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-71885-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910484385703321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioimaging
| Bioimaging |
| Pubbl/distr/stampa | [Bristol, England], : IOP Pub., -©1998 |
| Soggetto topico |
Imaging systems in medicine
Imaging systems in biology Diagnostic imaging Biosensing Techniques Diagnostic Imaging Image Processing, Computer-Assisted Microscopy Spectrum Analysis Imagerie médicale Imagerie en biologie Imagerie pour le diagnostic Imatges mèdiques Biosensors |
| Soggetto genere / forma |
Periodical
periodicals. Periodicals. Périodiques. Revistes electròniques. |
| ISSN | 1361-6374 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910329437903321 |
| [Bristol, England], : IOP Pub., -©1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biomechanical modelling and simulation on musculoskeletal system / / edited by Yubo Fan and Lizhen Wang
| Biomechanical modelling and simulation on musculoskeletal system / / edited by Yubo Fan and Lizhen Wang |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (395 pages) |
| Disciplina | 617.47 |
| Soggetto topico |
Musculoskeletal system
Biotechnology Biomechanics Aparell locomotor Imatges mèdiques Enginyeria biomèdica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-3911-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910551838503321 |
| Gateway East, Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biomedical visualisation . Volume 11 / / Paul Rea, editor
| Biomedical visualisation . Volume 11 / / Paul Rea, editor |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (350 pages) |
| Disciplina | 610.28 |
| Collana | Advances in experimental medicine and biology |
| Soggetto topico |
Biomedical engineering
Biotechnology Computer vision Enginyeria biomèdica Imatges mèdiques Visualització tridimensional Biotecnologia |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783030877798
9783030877781 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- About the Book -- Contents -- Editor and Contributors -- 1: Creating Interactive Three-Dimensional Applications to Visualise Novel Stent Grafts That Aid in the Treatment of Aortic Ane... -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Aortic Aneurysm Background -- 1.2.1.1 Thoracic Aortic Aneurysms -- 1.2.1.2 Abdominal Aortic Aneurysms -- 1.2.2 Surgical Interventions for AAAs and TAAs -- 1.2.2.1 Open Surgical Repair and Endovascular Aneurysm Repair of AAAs -- 1.2.2.2 Open Surgical Repair and Endovascular Aneurysm Repair of TAAs -- 1.2.3 Potential of Medical Visualisations for Surgical Techniques -- 1.2.3.1 Imaging Modalities in a Healthcare Setting -- 1.2.3.2 Public Engagement for Medical Visualisation -- 1.3 Methods -- 1.3.1 Conceptual Development (Storyboard/Outline) -- 1.3.2 Digital 3D Content Production -- 1.3.2.1 Segmentation of the Aorta, Kidneys and Associated Vessels -- 1.3.2.2 Bifrost Visual Programming -- 1.3.2.2.1 Voxel Volume Remeshing Using Bifrost Graph Editor -- 1.3.2.3 Retopology and Sculpting -- 1.3.2.4 Modelling of the Heart -- 1.3.2.5 Modelling of Relay Endograft -- 1.3.2.6 Modelling of Fenestrated Anaconda Endograft -- 1.3.2.6.1 Wires and Stitching of Stent Graft -- 1.3.2.6.2 Stitches and Fine Details of Graft -- 1.3.2.6.3 Additional Stent Body Models -- 1.3.2.6.4 Deployment Devices -- 1.3.2.7 Texturing in Substance Painter -- 1.3.2.8 Informational Animations -- 1.3.2.8.1 Animations for the Fenestrated Anaconda Stent Graft -- 1.3.2.8.2 Animations for the Proximal Relay Stent Graft -- 1.3.2.8.3 Red Blood Cell Flow Animations -- 1.3.2.8.4 Post Processing -- 1.3.2.9 Application Development -- 1.3.2.9.1 Home Screen -- 1.3.2.9.2 Features Section -- 1.3.2.9.3 Clinical Performance and Deployment Sections -- 1.4 Results.
1.4.1 Outcomes from Evaluating the Finished Application with Clinical Professionals -- 1.5 Discussion -- 1.5.1 Discussion of Development Process -- 1.5.2 Discussion of Application Feedback -- 1.5.3 Benefits and Drawbacks of the Application/3D Visualisation Technique -- 1.5.4 Limitations -- 1.5.5 Further Development -- 1.6 Conclusion -- References -- 2: Using Confocal Microscopy to Generate an Accurate Vascular Model for Use in Patient Education Animation -- 2.1 Introduction -- 2.2 Blood Pressure -- 2.3 Blood Pressure Regulation -- 2.4 Pathophysiology of Hypertension -- 2.5 Peripheral Resistance Artery Structure and Vascular Remodelling in Hypertension -- 2.6 Treatment of Hypertension -- 2.7 Medication Adherence -- 2.8 Patient Education Can Improve Medication Adherence -- 2.9 Generating Digital 3D Models Using Confocal Microscopy -- 2.10 Building a Complete Vessel 3D Model from a Partial Confocal Microscopy Dataset -- 2.11 Modelling the Tunica Intima -- 2.12 Tunica Media -- 2.13 Tunica Externa -- 2.14 Simple Effects in Animation -- 2.15 Vascular Wall Remodelling Using Blend Shapes -- 2.16 Maya´s MASH Toolkit -- 2.17 Materials (Shaders) -- 2.18 Lighting -- 2.19 Rendering -- 2.20 Results -- 2.21 Discussion and Evaluation -- References -- 3: Methods and Applications of 3D Patient-Specific Virtual Reconstructions in Surgery -- 3.1 Introduction -- 3.2 Methods of 3D Virtual Reconstructions -- 3.2.1 Segmentation -- 3.2.1.1 Manual Segmentation -- 3.2.1.2 Algorithmic Approaches to Segmentation -- 3.2.2 Rendering Methods for 3D Virtual Models -- 3.2.2.1 Volumetric Rendering -- 3.2.2.2 Surface Rendering Techniques -- 3.2.3 Post-Processing of Surface Polygon Mesh -- 3.2.3.1 Decimation -- 3.2.3.2 Smoothing -- 3.2.4 Advanced 3D Modelling Techniques -- 3.2.4.1 Complex 3D Modelling and Digital Sculpture -- 3.2.4.2 Retopology -- 3.2.4.3 UV Unwrapping. 3.2.4.4 Texture Maps and Physically Based Rendering -- 3.3 Applications of 3D Models in Surgical Practice -- 3.3.1 3D Models in Surgical Planning -- 3.3.1.1 Anatomical Understanding -- 3.3.1.2 Patient-Specific Simulation -- 3.3.1.3 Resection Planning -- 3.3.1.4 Reconstruction -- 3.3.2 Intraoperative Navigation -- 3.3.3 3D Models in Surgical Patient Education -- 3.4 Conclusion -- References -- 4: Proof of Concept for the Use of Immersive Virtual Reality in Upper Limb Rehabilitation of Multiple Sclerosis Patients -- 4.1 Rationale -- 4.2 Multiple Sclerosis and Conventional Physiotherapy -- 4.3 Virtual Reality-Based Rehabilitation -- 4.3.1 Interaction -- 4.3.2 Visualisation -- 4.3.3 HMDs in MS Rehabilitation -- 4.4 Treatment Adherence and Motivation -- 4.4.1 Feedback -- 4.5 Aims and Objectives -- 4.6 Methods -- 4.6.1 Workflow (Fig. 4.1) -- 4.6.1.1 Materials -- 4.6.2 Design and Development Process -- 4.7 Developmental Outcomes -- 4.7.1 Menu Scene -- 4.7.2 Piano Scene -- 4.7.3 Maze Scene -- 4.7.4 Evaluation -- 4.7.4.1 Participants -- 4.7.4.2 Experimental Set-Up and Procedure -- 4.7.4.3 Ethics -- 4.7.4.4 Data Analysis -- 4.8 Results -- 4.9 Discussion -- 4.9.1 Future Works -- 4.10 Conclusion -- References -- 5: Virtual Wards: A Rapid Adaptation to Clinical Attachments in MBChB During the COVID-19 Pandemic -- 5.1 Introduction -- 5.2 Theoretical Underpinnings -- 5.2.1 Dual-Process Theory -- 5.2.2 Script Theory -- 5.2.3 Cognitive Load Theory -- 5.2.4 Situated Cognition -- 5.3 Technological Considerations -- 5.3.1 Flexibility of Content -- 5.3.2 Inclusion of Automatically Marked Questions -- 5.3.3 Control over Non-linear Lesson Flow -- 5.3.4 Large Amount of Information in a Single Click -- 5.3.5 Embedding H5G Interactive Content -- 5.3.6 Tips for Virtual Ward Developers -- 5.4 Description of the Virtual Wards -- 5.4.1 The Content Covered by the Virtual Wards. 5.4.2 The Format of the Modules -- 5.4.3 The Interactive Cases -- 5.4.3.1 Setting the Scene -- 5.4.3.2 Interactive History-Taking -- 5.4.3.3 Observations and Examination -- 5.4.3.4 Investigations: Selection and Interpretation -- 5.4.3.5 Refining the Differential -- 5.4.3.6 Management -- 5.5 Evaluation and Future -- 5.5.1 Asynchronous Engagement with Virtual Wards -- 5.5.2 Issues Working with Multiple New Technologies -- 5.5.3 Clinician Time Involved to Create Content -- 5.5.4 Simultaneous Virtual Wards -- 5.5.5 Quality Control of Benevolent Contributor Content -- 5.5.6 A Reflection on the Faculty Experience -- 5.5.7 The Students´ Perspective -- 5.5.7.1 The Virtual Ward Format -- 5.5.7.2 Feedback on Content -- 5.5.7.3 Amount of Content -- 5.5.7.4 Technical Difficulties -- 5.5.7.5 Loss of Clinical Contact -- 5.5.8 Lessons Learnt -- 5.6 Tips for Setting Up Virtual Wards -- 5.7 The Future of Virtual Wards -- References -- 6: Artificial Intelligence: Innovation to Assist in the Identification of Sono-anatomy for Ultrasound-Guided Regional Anaesthe... -- 6.1 Introduction -- 6.2 Part 1: Challenges in Ultrasound Image Interpretation and Ultrasound-Guided Regional Anaesthesia -- 6.2.1 What Is Ultrasound-Guided Regional Anaesthesia? -- 6.2.2 Why Is Regional Anaesthesia Difficult? -- 6.2.2.1 Selection of the Right Block -- 6.2.2.2 Acquiring and Interpreting an Optimised Ultrasound Image -- 6.2.2.2.1 Operator Dependence -- 6.2.2.2.2 Anatomical Variation -- 6.2.2.2.3 Learning Materials Depict Ideal Versions of Sono-anatomy -- 6.2.2.2.4 Comorbidity -- 6.2.2.2.5 Inattentional Blindness -- 6.2.2.2.6 Satisfaction of Search -- 6.2.2.2.7 Fatigability -- 6.2.2.3 Planning a Safe Needle Path and Visualising the Needle Tip -- 6.2.2.4 Ensuring Accurate Deposition of Local Anaesthetic Around the Target Structure. 6.2.2.5 Post-Procedure Monitoring Both to Ensure Effect and to Monitor for any Complications -- 6.2.3 Education in Ultrasound-Guided Regional Anaesthesia -- 6.3 Part 2: An Introduction to Artificial Intelligence for Clinicians -- 6.3.1 What Is Artificial Intelligence? -- 6.3.2 Machine Learning Categories -- 6.3.3 The Computational Problem -- 6.3.4 Rule-Based vs Model-Based Techniques -- 6.3.4.1 Rule-Based Techniques -- 6.3.4.2 Model-Based Techniques -- 6.3.5 Convolutional Neural Networks -- 6.3.6 The U-Net Architecture -- 6.3.7 How Models Train -- 6.3.8 Model Evaluation -- 6.4 Part 3: The Current State of AI in Ultrasound Image Interpretation for Ultrasound-Guided Regional Anaesthesia -- 6.4.1 How Can Technology Be Used to Augment UGRA? -- 6.4.2 Summary of Different Approaches -- 6.4.3 Segmentation -- 6.4.3.1 Deep Learning Approaches -- 6.4.3.2 Non-deep Learning Approaches -- 6.4.4 Tracking Methods -- 6.4.4.1 How Does Tracking Fit in with Segmentation? -- 6.4.4.2 Approaches -- 6.4.5 Summary and Future Directions -- 6.5 Part 4: A Case Study: ScanNav Anatomy Peripheral Nerve Block -- 6.6 Part 5: The Future: Artificial Intelligence and Ultrasound-Guided Regional Anaesthesia -- 6.6.1 Supporting Practice -- 6.6.2 Changing How We Learn -- 6.6.3 The Extra Dimension -- 6.6.4 The Future of Clinical Practice -- References -- 7: A Systematic Review of Randomised Control Trials Evaluating the Efficacy and Safety of Open and Endoscopic Carpal Tunnel Re... -- 7.1 Introduction -- 7.1.1 Carpal Tunnel Syndrome -- 7.1.2 The Surgical Interventions -- 7.1.3 Aims and Objectives -- 7.2 Methods -- 7.2.1 Study Identification -- 7.2.2 Study Screening and Selection -- 7.2.3 Assessment of Patient Outcomes -- 7.2.4 Risk of Bias Assessment -- 7.2.5 Data Analysis -- 7.3 Results -- 7.3.1 Study Identification, Screening and Inclusion -- 7.3.2 Study Characteristics. 7.3.3 Patient Outcomes. |
| Record Nr. | UNINA-9910544873003321 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
BMC medical imaging
| BMC medical imaging |
| Pubbl/distr/stampa | London, : BioMed Central, [2001]- |
| Soggetto topico |
Diagnostic imaging
Diagnostic Imaging Imatges mèdiques |
| Soggetto genere / forma |
Periodical
Fulltext Internet Resources. Periodicals. Revistes electròniques. |
| ISSN | 1471-2342 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
BioMed Central medical imaging
Medical imaging |
| Record Nr. | UNINA-9910146813203321 |
| London, : BioMed Central, [2001]- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||