C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2022 |
Descrizione fisica | 1 online resource (144 pages) |
Disciplina | 515.7242 |
Soggetto topico |
Partial differential operators
Hypoelliptic operators |
ISBN | 1-5044-8165-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522580503321 |
[Place of publication not identified] : , : IEEE, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2022 |
Descrizione fisica | 1 online resource (144 pages) |
Disciplina | 515.7242 |
Soggetto topico |
Partial differential operators
Hypoelliptic operators |
ISBN | 1-5044-8165-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996575257403316 |
[Place of publication not identified] : , : IEEE, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Calculus on Heisenberg Manifolds. (AM-119), Volume 119 / / Richard Beals, Peter Charles Greiner |
Autore | Beals Richard |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (208 pages) |
Disciplina | 515.7/242 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hypoelliptic operators
Calculus Differentiable manifolds |
Soggetto non controllato |
Adjoint
Affine transformation Approximation Asymptotic expansion Calculation Codimension Complex geometry Complex manifold Computation Convolution De Rham cohomology Derivative Differentiable manifold Differential operator Dimension (vector space) Estimation Fourier integral operator Fourier transform Function space Heat equation Heisenberg group Hilbert space Homogeneous function Hypoelliptic operator Identity element Integration by parts Invertible matrix Manifold Nilpotent group Parametrix Partial differential equation Pointwise product Pointwise Polynomial Principal part Pseudo-differential operator Riemannian manifold Self-adjoint Several complex variables Singular integral Smoothing Structure constants Subset Summation Tangent bundle Theorem Transpose Unit circle Vector field |
ISBN | 1-4008-8239-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. The Model Operators -- Chapter 2. Inverting the Model Operator -- Chapter 3. Pseudodifferential Operators on Heisenberg Manifolds -- Chapter 4. Application to the ∂̅b - Complex -- Bibliography -- Index of Terminology -- List of Notation |
Record Nr. | UNINA-9910154747103321 |
Beals Richard | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge |
Autore | Ponge Raphael <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (150 p.) |
Disciplina | 515/.7242 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hypoelliptic operators
Spectral theory (Mathematics) Calculus Differentiable manifolds |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0512-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]"" ""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation"" ""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References"" |
Record Nr. | UNINA-9910480536403321 |
Ponge Raphael <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge |
Autore | Ponge Raphael <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (150 p.) |
Disciplina | 515/.7242 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hypoelliptic operators
Spectral theory (Mathematics) Calculus Differentiable manifolds |
ISBN | 1-4704-0512-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]"" ""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation"" ""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References"" |
Record Nr. | UNINA-9910788852103321 |
Ponge Raphael <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge |
Autore | Ponge Raphael <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (150 p.) |
Disciplina | 515/.7242 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hypoelliptic operators
Spectral theory (Mathematics) Calculus Differentiable manifolds |
ISBN | 1-4704-0512-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]"" ""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation"" ""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References"" |
Record Nr. | UNINA-9910819101203321 |
Ponge Raphael <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier |
Autore | Helffer Bernard |
Edizione | [1st ed. 2005.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, United States : , : Springer, , [2005] |
Descrizione fisica | 1 online resource (X, 209 p.) |
Disciplina | 510 |
Collana | Lecture notes in mathematics |
Soggetto topico |
Spectral theory (Mathematics)
Hypoelliptic operators |
ISBN | 3-540-31553-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index. |
Record Nr. | UNINA-9910483993903321 |
Helffer Bernard | ||
Berlin, Germany ; ; New York, United States : , : Springer, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier |
Autore | Helffer Bernard |
Edizione | [1st ed. 2005.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, United States : , : Springer, , [2005] |
Descrizione fisica | 1 online resource (X, 209 p.) |
Disciplina | 510 |
Collana | Lecture notes in mathematics |
Soggetto topico |
Spectral theory (Mathematics)
Hypoelliptic operators |
ISBN | 3-540-31553-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index. |
Record Nr. | UNISA-996466484303316 |
Helffer Bernard | ||
Berlin, Germany ; ; New York, United States : , : Springer, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier |
Autore | Helffer, Bernard |
Pubbl/distr/stampa | Berlin : Springer, c2005 |
Descrizione fisica | x, 209 p. ; 24 cm |
Disciplina | 515.353 |
Altri autori (Persone) | Nier, Francisauthor |
Collana | Lecture notes in mathematics, 0075-8434 ; 1862 |
Soggetto topico |
Hypoelliptic operators
Spectral theory (Mathematics) |
ISBN | 3540242007 |
Classificazione |
AMS 35H10
AMS 35H20 AMS 35P05 AMS 35P15 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000931429707536 |
Helffer, Bernard | ||
Berlin : Springer, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
An invitation to hypoelliptic operators and Hormander's vector fields / / Marco Bramanti |
Autore | Bramanti Marco |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , 2014 |
Descrizione fisica | 1 online resource (xi, 150 pages) : illustrations |
Disciplina | 515 |
Collana | SpringerBriefs in Mathematics |
Soggetto topico | Hypoelliptic operators |
ISBN | 3-319-02087-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Hörmander's operators: what they are -- 2 Hörmander's operators: why they are studied -- 3 A priori estimates in Sobolev spaces -- 4 Geometry of Hörmander's vector fields -- 5 Beyond Hörmander's operators. |
Record Nr. | UNINA-9910299964203321 |
Bramanti Marco | ||
Cham, Switzerland : , : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|