top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers
C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2022
Descrizione fisica 1 online resource (144 pages)
Disciplina 515.7242
Soggetto topico Partial differential operators
Hypoelliptic operators
ISBN 1-5044-8165-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910522580503321
[Place of publication not identified] : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers
C37.234-2021 - IEEE Guide for Protective Relay Applications to Power System Buses / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2022
Descrizione fisica 1 online resource (144 pages)
Disciplina 515.7242
Soggetto topico Partial differential operators
Hypoelliptic operators
ISBN 1-5044-8165-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996575257403316
[Place of publication not identified] : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Calculus on Heisenberg Manifolds. (AM-119), Volume 119 / / Richard Beals, Peter Charles Greiner
Calculus on Heisenberg Manifolds. (AM-119), Volume 119 / / Richard Beals, Peter Charles Greiner
Autore Beals Richard
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (208 pages)
Disciplina 515.7/242
Collana Annals of Mathematics Studies
Soggetto topico Hypoelliptic operators
Calculus
Differentiable manifolds
Soggetto non controllato Adjoint
Affine transformation
Approximation
Asymptotic expansion
Calculation
Codimension
Complex geometry
Complex manifold
Computation
Convolution
De Rham cohomology
Derivative
Differentiable manifold
Differential operator
Dimension (vector space)
Estimation
Fourier integral operator
Fourier transform
Function space
Heat equation
Heisenberg group
Hilbert space
Homogeneous function
Hypoelliptic operator
Identity element
Integration by parts
Invertible matrix
Manifold
Nilpotent group
Parametrix
Partial differential equation
Pointwise product
Pointwise
Polynomial
Principal part
Pseudo-differential operator
Riemannian manifold
Self-adjoint
Several complex variables
Singular integral
Smoothing
Structure constants
Subset
Summation
Tangent bundle
Theorem
Transpose
Unit circle
Vector field
ISBN 1-4008-8239-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Introduction -- Chapter 1. The Model Operators -- Chapter 2. Inverting the Model Operator -- Chapter 3. Pseudodifferential Operators on Heisenberg Manifolds -- Chapter 4. Application to the ∂̅b - Complex -- Bibliography -- Index of Terminology -- List of Notation
Record Nr. UNINA-9910154747103321
Beals Richard  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Autore Ponge Raphael <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (150 p.)
Disciplina 515/.7242
Collana Memoirs of the American Mathematical Society
Soggetto topico Hypoelliptic operators
Spectral theory (Mathematics)
Calculus
Differentiable manifolds
Soggetto genere / forma Electronic books.
ISBN 1-4704-0512-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]""
""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation""
""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References""
Record Nr. UNINA-9910480536403321
Ponge Raphael <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Autore Ponge Raphael <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (150 p.)
Disciplina 515/.7242
Collana Memoirs of the American Mathematical Society
Soggetto topico Hypoelliptic operators
Spectral theory (Mathematics)
Calculus
Differentiable manifolds
ISBN 1-4704-0512-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]""
""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation""
""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References""
Record Nr. UNINA-9910788852103321
Ponge Raphael <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds / / Raphaël S. Ponge
Autore Ponge Raphael <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (150 p.)
Disciplina 515/.7242
Collana Memoirs of the American Mathematical Society
Soggetto topico Hypoelliptic operators
Spectral theory (Mathematics)
Calculus
Differentiable manifolds
ISBN 1-4704-0512-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1.1. Heisenberg manifolds and their main differential operators""; ""1.2. Intrinsic approach to the Heisenberg calculus""; ""1.3. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""1.4. Heat equation and complex powers of hypoelliptic operators""; ""1.5. Spectral asymptotics for hypoelliptic operators""; ""1.6. Weyl asymptotics and CR geometry""; ""1.7. Weyl asymptotics and contact geometry""; ""1.8. Organization of the memoir""; ""Chapter 2. Heisenberg manifolds and their main differential operators""; ""2.1. Heisenberg manifolds""
""2.2. Main differential operators on Heisenberg manifolds""""Chapter 3. Intrinsic Approach to the Heisenberg Calculus""; ""3.1. Heisenberg calculus""; ""3.2. Principal symbol and model operators.""; ""3.3. Hypoellipticity and Rockland condition""; ""3.4. Invertibility criteria for sublaplacians""; ""3.5. Invert ibility criteria for the main differential operators""; ""Chapter 4. Holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""4.1. Almost homogeneous approach to the Heisenberg calculus""; ""4.2. Holomorphic families of Î?[sub(H)]DO[sub(S)]""
""4.3. Composition of holomorphic families of Î?[sub(H)]DO[sub(S)]""""4.4. Kernel characterization of holomorphic families of Î?]DO[sub(S)]""; ""4.5. Holomorphic families of Î?]DO[sub(S)] on a general Heisenberg manifold""; ""4.6. Transposes and adjoints of holomorphic families of Î?[sub(H)]DO[sub(S)]""; ""Chapter 5. Heat Equation and Complex Powers of Hypoelliptic Operators""; ""5.1. Pseudodifferential representation of the heat kernel""; ""5.2. Heat equation and sublaplacians""; ""5.3. Complex powers of hypoelliptic differential operators""; ""5.4. Rockland condition and the heat equation""
""5.5. Weighted Sobolev Spaces""""Chapter 6. Spectral Asymptotics for Hypoelliptic Operators""; ""6.1. Spectral asymptotics for hypoelliptic operators""; ""6.2. Weyl asymptotics and CR geometry""; ""6.3. Weyl asymptotics and contact geometry""; ""Appendix A. Proof of Proposition 3.1.18""; ""Appendix B. Proof of Proposition 3.1.21""; ""Appendix. Bibliography""; ""References""
Record Nr. UNINA-9910819101203321
Ponge Raphael <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Autore Helffer Bernard
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Descrizione fisica 1 online resource (X, 209 p.)
Disciplina 510
Collana Lecture notes in mathematics
Soggetto topico Spectral theory (Mathematics)
Hypoelliptic operators
ISBN 3-540-31553-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index.
Record Nr. UNINA-9910483993903321
Helffer Bernard  
Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for fokker-planck operators and witten laplacians / / Bernard Helffer, Francis Nier
Autore Helffer Bernard
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Descrizione fisica 1 online resource (X, 209 p.)
Disciplina 510
Collana Lecture notes in mathematics
Soggetto topico Spectral theory (Mathematics)
Hypoelliptic operators
ISBN 3-540-31553-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index.
Record Nr. UNISA-996466484303316
Helffer Bernard  
Berlin, Germany ; ; New York, United States : , : Springer, , [2005]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin : Springer, c2005
Descrizione fisica x, 209 p. ; 24 cm
Disciplina 515.353
Altri autori (Persone) Nier, Francisauthor
Collana Lecture notes in mathematics, 0075-8434 ; 1862
Soggetto topico Hypoelliptic operators
Spectral theory (Mathematics)
ISBN 3540242007
Classificazione AMS 35H10
AMS 35H20
AMS 35P05
AMS 35P15
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000931429707536
Helffer, Bernard  
Berlin : Springer, c2005
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
An invitation to hypoelliptic operators and Hormander's vector fields / / Marco Bramanti
An invitation to hypoelliptic operators and Hormander's vector fields / / Marco Bramanti
Autore Bramanti Marco
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , 2014
Descrizione fisica 1 online resource (xi, 150 pages) : illustrations
Disciplina 515
Collana SpringerBriefs in Mathematics
Soggetto topico Hypoelliptic operators
ISBN 3-319-02087-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Hörmander's operators: what they are -- 2 Hörmander's operators: why they are studied -- 3 A priori estimates in Sobolev spaces -- 4 Geometry of Hörmander's vector fields -- 5 Beyond Hörmander's operators.
Record Nr. UNINA-9910299964203321
Bramanti Marco  
Cham, Switzerland : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui