top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource
Disciplina 547.23
Soggetto topico Hydrogenation
Soggetto genere / forma Electronic books.
ISBN 3-527-82230-5
3-527-82229-1
3-527-82231-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 The Historical Development of Asymmetric Hydrogenation -- 1.1 Introduction -- 1.2 Early Work on the Recognition of Molecular Asymmetry -- 1.3 Origins and Early Development of Asymmetric Synthesis -- 1.4 Early Developments in the Asymmetric Heterogeneous Hydrogenation of Alkenes -- 1.5 The Development of Rhodium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.6 The Development of Ruthenium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.7 Conclusions -- References -- Chapter 2 Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade -- 2.1 Introduction -- 2.2 Asymmetric Hydrogenation with Rhodium Catalysts -- 2.2.1 Chiral Bisphosphine Ligands -- 2.2.2 Chiral Ferrocenyl Bisphosphine Ligands -- 2.2.3 Chiral Phosphine-Phosphoramidite and Phosphine-Phosphite Ligands -- 2.2.4 Self‐assembled Diphosphine Ligands -- 2.2.5 Monodentate Phosphorus Ligands -- 2.2.6 Asymmetric Transfer Hydrogenation with Rhodium Catalysts -- 2.3 Asymmetric Hydrogenation with Iridium Catalysts -- 2.3.1 Chiral Bidentate Ferrocenyl Ligands -- 2.3.2 Other Chiral Bidentate P,N‐ligands -- 2.3.3 Asymmetric Transfer Hydrogenation with Iridium Catalysts -- 2.4 Asymmetric Hydrogenation with Other Transition Metal Catalysts -- 2.4.1 Asymmetric Hydrogenation with Ruthenium Catalysts -- 2.4.2 Asymmetric Hydrogenation with Palladium Catalysts -- 2.5 Asymmetric (Transfer) Hydrogenation with First‐row Transition Metal Catalysts -- 2.6 Conclusion -- References -- Chapter 3 Asymmetric (Transfer) Hydrogenation of Functionalized Ketones -- 3.1 Introduction -- 3.2 Asymmetric (Transfer) Hydrogenation of Alkyl Ketones -- 3.3 Asymmetric Hydrogenation of α,β‐Unsaturated Ketones -- 3.3.1 Alkenyl Alkyl Ketones -- 3.3.2 Alkynyl Alkyl Ketones.
3.4 Asymmetric Hydrogenation of α‐Aminoketones -- 3.5 Asymmetric Hydrogenation of α‐hydroxyketones -- 3.6 Asymmetric Hydrogenation of α‐Oxophosphonates -- 3.7 Summary and Conclusions -- References -- Chapter 4 Asymmetric (Transfer) Hydrogenation of Aryl and Heteroaryl Ketones -- 4.1 Introduction -- 4.2 Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones -- 4.2.1 Chiral Ruthenium Catalysts -- 4.2.1.1 Chiral Ruthenium‐Diphosphine/Diamine Catalysts -- 4.2.1.2 Chiral Arene-Ruthenium‐Diamine Catalysts -- 4.2.1.3 Chiral Ruthenium-Phosphine-Oxazoline Catalysts -- 4.2.1.4 Chiral Ruthenium Catalysts Containing Tridentate Pincer Ligands -- 4.2.1.5 Chiral Ruthenium Catalysts Containing Tetradentate Ligands -- 4.2.2 Chiral Iridium Catalysts -- 4.2.3 Other Chiral Metal Catalysts -- 4.3 Asymmetric Transfer Hydrogenation of Aryl and Heteroaryl Ketones -- 4.3.1 Chiral Ruthenium Catalysts -- 4.3.1.1 Chiral Arene Ruthenium-N‐Sulfonylated 1,2‐Diamine Complexes -- 4.3.1.2 Chiral Ruthenium Catalysts with Other Bidentate Ligands -- 4.3.1.3 Chiral Ruthenium Catalysts Containing Tridentate and Tetradentate Ligands -- 4.3.2 Chiral Rhodium and Iridium Catalysts -- 4.3.2.1 Chiral Rhodium and Iridium Complexes Containing Diamine and Related Ligands -- 4.3.2.2 Chiral Rhodium and Iridium Catalysts Containing Other Ligands -- 4.3.3 Other Chiral Metal Catalysts -- 4.3.3.1 Chiral Iron Catalysts -- 4.3.3.2 Chiral Osmium Catalysts -- 4.3.3.3 Other Chiral Metal Catalysts -- 4.4 Summary -- References -- Chapter 5 Asymmetric (Transfer) Hydrogenation of Substituted Ketones Through Dynamic Kinetic Resolution -- 5.1 Introduction -- 5.2 α‐Substituted Ketones -- 5.3 α‐Substituted Cyclic Ketones -- 5.4 α,α'‐Disubstituted Cyclic Ketones -- 5.5 α,β‐Disubstituted Cyclic Ketones -- 5.6 α‐Substituted β‐Keto Esters -- 5.6.1 α‐Amino β‐Keto Esters -- 5.6.2 Other α‐Substituted β‐Keto Esters.
5.7 α‐Substituted β‐Keto Amides -- 5.8 α‐Substituted β‐Keto Sulfones, Sulfonamides, and Phosphonates -- 5.9 β‐Substituted α‐Keto Esters and Phosphonates -- 5.10 β‐Alkoxy Ketones -- 5.11 1,2‐Diketones -- 5.12 β‐Substituted Ketones -- 5.13 α‐Substituted Aldehydes -- 5.14 Summary and Conclusions -- References -- Chapter 6 Industrial Applications of Asymmetric (Transfer) Hydrogenation -- 6.1 Introduction -- 6.2 Industrial Applications of Asymmetric Hydrogenation -- 6.2.1 Asymmetric Hydrogenation of Enamide -- 6.2.1.1 l‐DOPA -- 6.2.1.2 Ramipril -- 6.2.1.3 Sitagliptin -- 6.2.1.4 (R)‐3‐Amino‐1‐butanol -- 6.2.1.5 (S)‐2,6‐Dimethyltyrosine -- 6.2.1.6 Apremilast -- 6.2.2 Asymmetric Hydrogenation of Ketone -- 6.2.2.1 Duloxetine -- 6.2.2.2 Dorzolamide -- 6.2.2.3 (R)‐1‐(3,5‐Bis(trifluoromethyl)‐phenyl)ethanol -- 6.2.2.4 4‐AA (Key Intermediate to Carbapenem Antibiotics) -- 6.2.2.5 Rivastigmine -- 6.2.2.6 Montelukast -- 6.2.2.7 Crizotinib -- 6.2.2.8 (R)‐Phenylephrine -- 6.2.2.9 Atorvastatin Calcium Salt -- 6.2.2.10 Orlistat -- 6.2.2.11 Ezetimibe -- 6.2.3 Asymmetric Hydrogenation of Olefin -- 6.2.3.1 l‐Menthol -- 6.2.3.2 Sacubitril -- 6.2.3.3 Naproxen, Ibuprofen, and Flurbiprofen -- 6.2.3.4 Ramelteon -- 6.2.3.5 Aliskiren -- 6.2.3.6 (+)‐cis‐Methyl Dihydrojasmonate -- 6.2.4 Asymmetric Hydrogenation of Imine -- 6.2.4.1 Solifenacin -- 6.2.4.2 (S)‐Metolachlor -- 6.2.5 Asymmetric Transfer Hydrogenation -- 6.3 Summary and Conclusions -- References -- Chapter 7 Tethered Ruthenium(II) Catalysts in Asymmetric Transfer Hydrogenation -- 7.1 Introduction: The Rationale Behind Tethered Catalysts Design -- 7.2 Tethered Ru(II) Catalysts and Their Syntheses -- 7.2.1 Synthetic Approaches to Tethered Catalysts -- 7.3 Applications to Asymmetric Reductions of Ketones and Imines -- 7.3.1 Reductions of Acetophenone Derivatives -- 7.3.1.1 Asymmetric Transfer Hydrogenation Using Formic Acid.
7.3.1.2 Reduction Under Aqueous Conditions -- 7.3.1.3 Hydrogenation with Hydrogen Gas -- 7.3.1.4 Racemic Catalysts for Reductions -- 7.3.1.5 Specific Applications to Complex Acetophenone Derivatives -- 7.3.2 Reductions of Acetylenic Ketones -- 7.3.3 Reductions of Benzophenone Ketones -- 7.3.4 Reductions of Diverse Ketones -- 7.3.5 Dynamic Kinetic Resolutions -- 7.3.6 Reductions of Imines -- 7.4 Conclusions and Outlook -- References -- Chapter 8 Homogeneous Asymmetric Hydrogenation of Heteroaromatic Compounds Catalyzed by Transition Metal Complexes -- 8.1 Introduction -- 8.2 Asymmetric Hydrogenation of Quinolines -- 8.3 Asymmetric Hydrogenation of Quinoxalines -- 8.4 Asymmetric Hydrogenation of Isoquinolines -- 8.5 Asymmetric Hydrogenation of Pyridines and Pyrazines -- 8.6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 8.7 Asymmetric Hydrogenation of Heteroarenes with Multi‐N‐Heterocycles -- 8.8 Asymmetric Hydrogenation of Other N‐Heteroarenes -- 8.9 Asymmetric Hydrogenation of O‐ and S‐Heteroarenes -- 8.10 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Asymmetric (Transfer) Hydrogenation of Imines -- 9.1 Asymmetric Hydrogenation of Imines -- 9.1.1 Iridium Catalysts -- 9.1.1.1 (P,P) Ligands -- 9.1.1.2 (P,N) Ligands -- 9.1.1.3 P‐Monodentate Ligands -- 9.1.2 Rhodium and Palladium Catalysts -- 9.2 Asymmetric Transfer Hydrogenation of Imines -- 9.2.1 Ruthenium Catalysts -- 9.2.2 Iridium and Rhodium Catalysts -- 9.2.3 Iron Catalysts -- 9.3 New Approaches -- 9.3.1 Metal Free -- 9.3.2 Biocatalytic Imine Reduction -- 9.3.2.1 Artificial Metalloenzymes -- 9.3.2.2 Imine Reductases (IREDs) -- 9.4 Summary and Conclusions -- References -- Chapter 10 Asymmetric Hydrogenation in Continuous‐Flow Conditions -- 10.1 Introduction -- 10.2 Chirally Modified Metal Surfaces -- 10.3 Well‐defined Transition‐metal Complexes.
10.3.1 Immobilized Systems -- 10.3.1.1 Covalently Anchored Ligands -- 10.3.1.2 Immobilization by the Augustine Method -- 10.3.1.3 Ionic Liquids as Matrices for Transition‐metal Complex Catalysts -- 10.3.2 Homogeneous Systems -- 10.3.3 Self‐supported Systems -- 10.4 Organocatalysts -- 10.5 Chiral Auxiliary‐controlled Asymmetric Hydrogenation in Flow -- 10.6 Summary and Outlook -- References -- Chapter 11 Organocatalytic Asymmetric Transfer Hydrogenation Reactions -- 11.1 Introduction -- 11.2 Reduction of C C Double Bonds -- 11.3 Reduction of C N Double Bonds -- 11.4 Cascade Reactions -- 11.5 Dearomatization -- 11.6 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910555167403321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource
Disciplina 547.23
Soggetto topico Hydrogenation
ISBN 3-527-82230-5
3-527-82229-1
3-527-82231-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 The Historical Development of Asymmetric Hydrogenation -- 1.1 Introduction -- 1.2 Early Work on the Recognition of Molecular Asymmetry -- 1.3 Origins and Early Development of Asymmetric Synthesis -- 1.4 Early Developments in the Asymmetric Heterogeneous Hydrogenation of Alkenes -- 1.5 The Development of Rhodium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.6 The Development of Ruthenium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.7 Conclusions -- References -- Chapter 2 Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade -- 2.1 Introduction -- 2.2 Asymmetric Hydrogenation with Rhodium Catalysts -- 2.2.1 Chiral Bisphosphine Ligands -- 2.2.2 Chiral Ferrocenyl Bisphosphine Ligands -- 2.2.3 Chiral Phosphine-Phosphoramidite and Phosphine-Phosphite Ligands -- 2.2.4 Self‐assembled Diphosphine Ligands -- 2.2.5 Monodentate Phosphorus Ligands -- 2.2.6 Asymmetric Transfer Hydrogenation with Rhodium Catalysts -- 2.3 Asymmetric Hydrogenation with Iridium Catalysts -- 2.3.1 Chiral Bidentate Ferrocenyl Ligands -- 2.3.2 Other Chiral Bidentate P,N‐ligands -- 2.3.3 Asymmetric Transfer Hydrogenation with Iridium Catalysts -- 2.4 Asymmetric Hydrogenation with Other Transition Metal Catalysts -- 2.4.1 Asymmetric Hydrogenation with Ruthenium Catalysts -- 2.4.2 Asymmetric Hydrogenation with Palladium Catalysts -- 2.5 Asymmetric (Transfer) Hydrogenation with First‐row Transition Metal Catalysts -- 2.6 Conclusion -- References -- Chapter 3 Asymmetric (Transfer) Hydrogenation of Functionalized Ketones -- 3.1 Introduction -- 3.2 Asymmetric (Transfer) Hydrogenation of Alkyl Ketones -- 3.3 Asymmetric Hydrogenation of α,β‐Unsaturated Ketones -- 3.3.1 Alkenyl Alkyl Ketones -- 3.3.2 Alkynyl Alkyl Ketones.
3.4 Asymmetric Hydrogenation of α‐Aminoketones -- 3.5 Asymmetric Hydrogenation of α‐hydroxyketones -- 3.6 Asymmetric Hydrogenation of α‐Oxophosphonates -- 3.7 Summary and Conclusions -- References -- Chapter 4 Asymmetric (Transfer) Hydrogenation of Aryl and Heteroaryl Ketones -- 4.1 Introduction -- 4.2 Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones -- 4.2.1 Chiral Ruthenium Catalysts -- 4.2.1.1 Chiral Ruthenium‐Diphosphine/Diamine Catalysts -- 4.2.1.2 Chiral Arene-Ruthenium‐Diamine Catalysts -- 4.2.1.3 Chiral Ruthenium-Phosphine-Oxazoline Catalysts -- 4.2.1.4 Chiral Ruthenium Catalysts Containing Tridentate Pincer Ligands -- 4.2.1.5 Chiral Ruthenium Catalysts Containing Tetradentate Ligands -- 4.2.2 Chiral Iridium Catalysts -- 4.2.3 Other Chiral Metal Catalysts -- 4.3 Asymmetric Transfer Hydrogenation of Aryl and Heteroaryl Ketones -- 4.3.1 Chiral Ruthenium Catalysts -- 4.3.1.1 Chiral Arene Ruthenium-N‐Sulfonylated 1,2‐Diamine Complexes -- 4.3.1.2 Chiral Ruthenium Catalysts with Other Bidentate Ligands -- 4.3.1.3 Chiral Ruthenium Catalysts Containing Tridentate and Tetradentate Ligands -- 4.3.2 Chiral Rhodium and Iridium Catalysts -- 4.3.2.1 Chiral Rhodium and Iridium Complexes Containing Diamine and Related Ligands -- 4.3.2.2 Chiral Rhodium and Iridium Catalysts Containing Other Ligands -- 4.3.3 Other Chiral Metal Catalysts -- 4.3.3.1 Chiral Iron Catalysts -- 4.3.3.2 Chiral Osmium Catalysts -- 4.3.3.3 Other Chiral Metal Catalysts -- 4.4 Summary -- References -- Chapter 5 Asymmetric (Transfer) Hydrogenation of Substituted Ketones Through Dynamic Kinetic Resolution -- 5.1 Introduction -- 5.2 α‐Substituted Ketones -- 5.3 α‐Substituted Cyclic Ketones -- 5.4 α,α'‐Disubstituted Cyclic Ketones -- 5.5 α,β‐Disubstituted Cyclic Ketones -- 5.6 α‐Substituted β‐Keto Esters -- 5.6.1 α‐Amino β‐Keto Esters -- 5.6.2 Other α‐Substituted β‐Keto Esters.
5.7 α‐Substituted β‐Keto Amides -- 5.8 α‐Substituted β‐Keto Sulfones, Sulfonamides, and Phosphonates -- 5.9 β‐Substituted α‐Keto Esters and Phosphonates -- 5.10 β‐Alkoxy Ketones -- 5.11 1,2‐Diketones -- 5.12 β‐Substituted Ketones -- 5.13 α‐Substituted Aldehydes -- 5.14 Summary and Conclusions -- References -- Chapter 6 Industrial Applications of Asymmetric (Transfer) Hydrogenation -- 6.1 Introduction -- 6.2 Industrial Applications of Asymmetric Hydrogenation -- 6.2.1 Asymmetric Hydrogenation of Enamide -- 6.2.1.1 l‐DOPA -- 6.2.1.2 Ramipril -- 6.2.1.3 Sitagliptin -- 6.2.1.4 (R)‐3‐Amino‐1‐butanol -- 6.2.1.5 (S)‐2,6‐Dimethyltyrosine -- 6.2.1.6 Apremilast -- 6.2.2 Asymmetric Hydrogenation of Ketone -- 6.2.2.1 Duloxetine -- 6.2.2.2 Dorzolamide -- 6.2.2.3 (R)‐1‐(3,5‐Bis(trifluoromethyl)‐phenyl)ethanol -- 6.2.2.4 4‐AA (Key Intermediate to Carbapenem Antibiotics) -- 6.2.2.5 Rivastigmine -- 6.2.2.6 Montelukast -- 6.2.2.7 Crizotinib -- 6.2.2.8 (R)‐Phenylephrine -- 6.2.2.9 Atorvastatin Calcium Salt -- 6.2.2.10 Orlistat -- 6.2.2.11 Ezetimibe -- 6.2.3 Asymmetric Hydrogenation of Olefin -- 6.2.3.1 l‐Menthol -- 6.2.3.2 Sacubitril -- 6.2.3.3 Naproxen, Ibuprofen, and Flurbiprofen -- 6.2.3.4 Ramelteon -- 6.2.3.5 Aliskiren -- 6.2.3.6 (+)‐cis‐Methyl Dihydrojasmonate -- 6.2.4 Asymmetric Hydrogenation of Imine -- 6.2.4.1 Solifenacin -- 6.2.4.2 (S)‐Metolachlor -- 6.2.5 Asymmetric Transfer Hydrogenation -- 6.3 Summary and Conclusions -- References -- Chapter 7 Tethered Ruthenium(II) Catalysts in Asymmetric Transfer Hydrogenation -- 7.1 Introduction: The Rationale Behind Tethered Catalysts Design -- 7.2 Tethered Ru(II) Catalysts and Their Syntheses -- 7.2.1 Synthetic Approaches to Tethered Catalysts -- 7.3 Applications to Asymmetric Reductions of Ketones and Imines -- 7.3.1 Reductions of Acetophenone Derivatives -- 7.3.1.1 Asymmetric Transfer Hydrogenation Using Formic Acid.
7.3.1.2 Reduction Under Aqueous Conditions -- 7.3.1.3 Hydrogenation with Hydrogen Gas -- 7.3.1.4 Racemic Catalysts for Reductions -- 7.3.1.5 Specific Applications to Complex Acetophenone Derivatives -- 7.3.2 Reductions of Acetylenic Ketones -- 7.3.3 Reductions of Benzophenone Ketones -- 7.3.4 Reductions of Diverse Ketones -- 7.3.5 Dynamic Kinetic Resolutions -- 7.3.6 Reductions of Imines -- 7.4 Conclusions and Outlook -- References -- Chapter 8 Homogeneous Asymmetric Hydrogenation of Heteroaromatic Compounds Catalyzed by Transition Metal Complexes -- 8.1 Introduction -- 8.2 Asymmetric Hydrogenation of Quinolines -- 8.3 Asymmetric Hydrogenation of Quinoxalines -- 8.4 Asymmetric Hydrogenation of Isoquinolines -- 8.5 Asymmetric Hydrogenation of Pyridines and Pyrazines -- 8.6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 8.7 Asymmetric Hydrogenation of Heteroarenes with Multi‐N‐Heterocycles -- 8.8 Asymmetric Hydrogenation of Other N‐Heteroarenes -- 8.9 Asymmetric Hydrogenation of O‐ and S‐Heteroarenes -- 8.10 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Asymmetric (Transfer) Hydrogenation of Imines -- 9.1 Asymmetric Hydrogenation of Imines -- 9.1.1 Iridium Catalysts -- 9.1.1.1 (P,P) Ligands -- 9.1.1.2 (P,N) Ligands -- 9.1.1.3 P‐Monodentate Ligands -- 9.1.2 Rhodium and Palladium Catalysts -- 9.2 Asymmetric Transfer Hydrogenation of Imines -- 9.2.1 Ruthenium Catalysts -- 9.2.2 Iridium and Rhodium Catalysts -- 9.2.3 Iron Catalysts -- 9.3 New Approaches -- 9.3.1 Metal Free -- 9.3.2 Biocatalytic Imine Reduction -- 9.3.2.1 Artificial Metalloenzymes -- 9.3.2.2 Imine Reductases (IREDs) -- 9.4 Summary and Conclusions -- References -- Chapter 10 Asymmetric Hydrogenation in Continuous‐Flow Conditions -- 10.1 Introduction -- 10.2 Chirally Modified Metal Surfaces -- 10.3 Well‐defined Transition‐metal Complexes.
10.3.1 Immobilized Systems -- 10.3.1.1 Covalently Anchored Ligands -- 10.3.1.2 Immobilization by the Augustine Method -- 10.3.1.3 Ionic Liquids as Matrices for Transition‐metal Complex Catalysts -- 10.3.2 Homogeneous Systems -- 10.3.3 Self‐supported Systems -- 10.4 Organocatalysts -- 10.5 Chiral Auxiliary‐controlled Asymmetric Hydrogenation in Flow -- 10.6 Summary and Outlook -- References -- Chapter 11 Organocatalytic Asymmetric Transfer Hydrogenation Reactions -- 11.1 Introduction -- 11.2 Reduction of C C Double Bonds -- 11.3 Reduction of C N Double Bonds -- 11.4 Cascade Reactions -- 11.5 Dearomatization -- 11.6 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910830693103321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Autore Furimsky Edward
Pubbl/distr/stampa Cambridge, UK, : Royal Society of Chemistry, c2008
Descrizione fisica 1 online resource (174 p.)
Disciplina 547.23
Collana RSC catalysis series
Soggetto topico Hydrogenation
Heterogeneous catalysis
Catalysts
Carbon
Soggetto genere / forma Electronic books.
ISBN 1-84755-841-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 030832 Carbons and Carbon supported cat. in Hydro_publicity; i_iv; v_viii; ix_xi; xii_xiv; 001_003; 004_011; 012_021; 022_039; 040_047; 048_104; 105_126; 127_134; 135_136; 137_138; 139_150; 151_159
Record Nr. UNINA-9910455247003321
Furimsky Edward  
Cambridge, UK, : Royal Society of Chemistry, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Autore Furimsky Edward
Pubbl/distr/stampa Cambridge, UK, : Royal Society of Chemistry, c2008
Descrizione fisica 1 online resource (174 p.)
Disciplina 547.23
Collana RSC catalysis series
Soggetto topico Hydrogenation
Heterogeneous catalysis
Catalysts
Carbon
ISBN 1-84755-841-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 030832 Carbons and Carbon supported cat. in Hydro_publicity; i_iv; v_viii; ix_xi; xii_xiv; 001_003; 004_011; 012_021; 022_039; 040_047; 048_104; 105_126; 127_134; 135_136; 137_138; 139_150; 151_159
Record Nr. UNINA-9910778307403321
Furimsky Edward  
Cambridge, UK, : Royal Society of Chemistry, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Carbons and carbon-supported catalysts in hydroprocessing [[electronic resource] /] / Edward Furimsky
Autore Furimsky Edward
Pubbl/distr/stampa Cambridge, UK, : Royal Society of Chemistry, c2008
Descrizione fisica 1 online resource (174 p.)
Disciplina 547.23
Collana RSC catalysis series
Soggetto topico Hydrogenation
Heterogeneous catalysis
Catalysts
Carbon
ISBN 1-84755-841-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 030832 Carbons and Carbon supported cat. in Hydro_publicity; i_iv; v_viii; ix_xi; xii_xiv; 001_003; 004_011; 012_021; 022_039; 040_047; 048_104; 105_126; 127_134; 135_136; 137_138; 139_150; 151_159
Record Nr. UNINA-9910827795703321
Furimsky Edward  
Cambridge, UK, : Royal Society of Chemistry, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chirale mono- und bidentate phosphorliganden für die enantioselektive metall-katalysierte hydrierung / / Dominik Frank
Chirale mono- und bidentate phosphorliganden für die enantioselektive metall-katalysierte hydrierung / / Dominik Frank
Autore Frank Dominik
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2011
Descrizione fisica 1 online resource (246 pages) : illustrations
Disciplina 547.23
Soggetto topico Hydrogenation
Metal catalysts
ISBN 3-7369-3944-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910794962503321
Frank Dominik  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chirale mono- und bidentate phosphorliganden für die enantioselektive metall-katalysierte hydrierung / / Dominik Frank
Chirale mono- und bidentate phosphorliganden für die enantioselektive metall-katalysierte hydrierung / / Dominik Frank
Autore Frank Dominik
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2011
Descrizione fisica 1 online resource (246 pages) : illustrations
Disciplina 547.23
Soggetto topico Hydrogenation
Metal catalysts
ISBN 3-7369-3944-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910817851203321
Frank Dominik  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (314 pages) : illustrations
Disciplina 665.89
Soggetto topico Carbon dioxide
Hydrogenation
Soggetto genere / forma Electronic books.
ISBN 3-527-82409-X
3-527-82411-1
3-527-82410-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century.
4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts.
7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity.
9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910555167603321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
CO2 hydrogenation catalysis / / edited by Yuichiro Himeda
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (314 pages) : illustrations
Disciplina 665.89
Soggetto topico Carbon dioxide
Hydrogenation
ISBN 3-527-82409-X
3-527-82411-1
3-527-82410-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century.
4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts.
7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity.
9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830849103321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Handbook of Homogeneous Hydrogenation
The Handbook of Homogeneous Hydrogenation
Autore Vries Johannes G. de
Pubbl/distr/stampa [Place of publication not identified], : John Wiley & Sons Incorporated, 2007
Descrizione fisica 1 online resource (1568 pages)
Disciplina 541.395
Soggetto topico Catalysis
Hydrogenation
Transition metal catalysts
ISBN 3-527-61938-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword. -- Preface. -- List of Contributors. -- Part I Introduction, Organometallic Aspects and Mechanism of Homogeneous Hydrogenation. -- 1 Rhodium (Luis A. Oro and Daniel Carmona). -- 1.1 Introduction. -- 1.2 The Early Years (1939-1970). -- 1.3 The [RhH(CO)(PPh3)3] Catalyst. -- 1.4 The [RhCl(PPh3)3] Complex and Related Catalysts. -- 1.5 The Cationic[Rh(diene)(PR3)X]+ Catalysts. -- 1.6 Enantioselective Rhodium Catalysts. -- 1.7 Some Dinuclear Catalyst Precursors. -- 1.8 Concluding Remark. -- Abbreviations. -- References. -- 2 Iridium (Robert H. Crabtree). -- 2.1 Introduction. -- 2.2 Historical Aspects. -- 2.3 Organometallic Aspects. -- 2.4 Catalysis. -- Acknowledgments. -- Abbreviations. -- References. -- 3 Ruthenium and Osmium (Robert H. Morris). -- 3.1 Introduction. -- 3.2 Ruthenium. -- 3.3 Osmium. -- Acknowledgment. -- Abbreviations. -- References. -- 4 Palladium and Platinum (Paolo Pelagatti). -- 4.1 Introduction. -- 4.2 Palladium. -- 4.3 Platinum. -- Abbreviations. -- References. -- 5 Nickel (Elisabeth Bouwman). -- 5.1 Introduction. -- 5.2 Coordination Chemistry and Organometallic Aspects of Nickel. -- 5.3 Hydrogenation Catalysis. -- 5.4 Concluding Remarks. -- Abbreviations. -- References. -- 6 Hydrogenation with Early Transition Metal, Lanthanide and Actinide Complexes   (Christophe Copéret). -- 6.1 Introduction. -- 6.2 Mechanistic Considerations. -- 6.3 Group IV Metal Hydrogenation Catalysts. -- 6.4 Hydrogenation Catalysts Based on Group III, Lanthanide, and Actinide Complexes. -- 6.5 Hydrogenation Catalysts Based on Groups V-VII Transition-Metal Complexes. -- 6.6 Supported Early Transition-Metal Complexes as Heterogeneous Hydrogenation Catalysts. -- 6.7 Conclusions. -- Acknowledgments. -- Abbreviations. -- References. -- 7 Ionic Hydrogenations (R. Morris Bullock). -- 7.1 Introduction. -- 7.2 Stoichiometric Ionic Hydrogenations. -- 7.3 Catalytic Ionic Hydrogenation. -- 7.4 Ruthenium Complexes Having an OH Proton Donor and a RuH as Hydride Donor. -- 7.5 Catalytic Hydrogenation of Ketones by Strong Bases. -- 7.6 Conclusion. -- Acknowledgments. -- Abbreviations. -- References. -- 8 Homogeneous Hydrogenation by Defined Metal Clusters (Roberto A. Sánchez-Delgado). -- 8.1 Introduction. -- 8.2 Hydrogenation of C=C Bonds. -- 8.3 Hydrogenation of CC Bonds. -- 8.4 Hydrogenation of Other Substrates. -- 8.5 Concluding Remarks. -- Abbreviations. -- References. -- 9 Homogeneous Hydrogenation: Colloids - Hydrogenation with Noble Metal Nanoparticles (Alain Roucoux and Karine Philippot ). -- 9.1 Introduction. -- 9.2 Concepts. -- 9.3 Hydrogenation of Compounds with C=C Bonds. -- 9.4 Hydrogenation of Compounds with CC Bonds. -- 9.5 Arene Hydrogenation. -- 9.6 Hydrogenation of Compounds with C=O Bonds. -- 9.7 Enantioselective Hydrogenation. -- 9.8 Conclusion. -- Abbreviations. -- References. -- 10 Kinetics of Homogeneous Hydrogenations: Measurement and Interpretation (Hans-Joachim Drexler, Angelika Preetz, Thomas Schmidt, and Detlef Heller). -- 10.1 Introduction. -- 10.2 The Basics of Michaelis-Menten Kinetics. -- 10.3 Hydrogenation From a Kinetic Viewpoint. -- Abbreviations. -- References. -- Part II Spectroscopic Methods in Homogeneous Hydrogenation 11 Nuclear Magnetic Resonance Spectroscopy in Homogeneous Hydrogenation Research (N. Koen de Vries). -- 11.1 Introduction. -- 11.2 NMR Methods. -- 11.3 Outlook. -- Abbreviations. -- References. -- 12 Parahydrogen-Induced Polarization: Applications to Detect Intermediates of Catalytic Hydrogenations (Joachim Bargon). -- 12.1 In-Situ Spectroscopy. -- 12.2 Ortho- and Parahydrogen. -- 12.3 Applications of PHIP-NMR Spectroscopy. -- 12.4 Catalyst-Attached Products as Observable Intermediates. -- 12.5 Colloidal Catalysts. -- 12.6 Transfer of Proton Polarization to Heteronuclei. -- 12.7 Catalysts Containing other Transition Metals. -- 12.8 Summary and Conclusions. -- Acknowledgment. -- Abbreviations. -- References. -- 13 A Tour Guide to Mass Spectrometric Studies of Hydrogenation Mechanisms (Corbin K. Ralph, Robin J. Hamilton, and Steven H. Bergens). -- 13.1 Introduction. -- 13.2 A General Description of ESI-MS. -- 13.3 Mechanistic Hydrogenation Studies. -- 13.4 Conclusions. -- Acknowledgments. -- Abbreviations. -- References. -- Part III Homogeneous Hydrogenation by Functional Groups. -- 14 Homogeneous Hydrogenation of Alkynes and Dienes (Alexander M. Kluwer and Cornelis J. Elsevier). -- 14.1 Stereoselective Homogeneous Hydrogenation of Alkynes to Alkenes. -- 14.2 Homogeneous Hydrogenation of Dienes to Monoenes. -- Abbreviations. -- References. -- 15 Homogeneous Hydrogenation of Aldehydes, Ketones, Imines and Carboxylic Acid Derivatives: Chemoselectivity and Catalytic Activity (Matthew L. Clarke and Geoffrey J. Roff). -- 15.1 Introduction. -- 15.2 Hydrogenation of Aldehydes. -- 15.3 Hydrogenation of Ketones. -- 15.4 Domino-Hydroformylation-Reduction Reactions. -- 15.5 Reductive Amination of Ketones and Aldehydes. -- 15.6 Hydroaminomethylation of Alkenes (Domino Hydroformylation-Reductive Amination). -- 15.7 Hydrogenation of Carboxylic Acid Derivatives. -- 15.8 Summary and Outlook. -- Abbreviations. -- References. -- 16 Hydrogenation of Arenes and Heteroaromatics (Claudio Bianchini, Andrea Meli, and Francesco Vizza). -- 16.1 Introduction. -- 16.2 Hydrogenation of Arenes. -- 16.3 Hydrogenation of Heteroaromatics. -- 16.4 Stereoselective Hydrogenation of Prochiral Heteroaromatics. -- Abbreviations. -- References. -- 17 Homogeneous Hydrogenation of Carbon Dioxide (Philip G. Jessop). -- 17.1 Introduction. -- 17.2 Reduction to Formic Acid. -- 17.3 Reduction to Oxalic Acid. -- 17.4 Reduction to Formate Esters. -- 17.5 Reduction to Formamides. -- 17.6 Reduction to Other Products. -- 17.7 Concluding Remarks. -- Acknowledgments. -- Abbreviations. -- References. -- 18 Dehalogenation Reactions (Attila Sisak and Ottó Balázs Simon). -- 19 Homogeneous Catalytic Hydrogenation of Polymers (Garry L. Rempel, Qinmin Pan, and Jialong Wu). -- 20 Transfer Hydrogenation Including the Meerwein-Ponndorf-Verley Reduction (Dirk Klomp, Ulf Hanefeld, and Joop A. Peters). -- 21 Diastereoselective Hydrogenation (Takamichi Yamagishi). -- 22 Hydrogen-Mediated Carbon-Carbon Bond Formation Catalyzed by Rhodium (Chang-Woo Cho and Michael J. Krische). -- Part IV Asymmetric Homogeneous Hydrogenation. -- 23 Enantioselective Alkene Hydrogenation: Introduction and Historic Overview (David J. Ager). -- 24 Enantioselective Hydrogenation: Phospholane Ligands (Christopher J. Cobley and Paul H. Moran). -- 25 Enantioselective Hydrogenation of Alkenes with Ferrocene-Based Ligands (Hans-Ulrich Blaser, Matthias Lotz, and Felix Spindler). -- 26 The other Bisphosphine Ligands for Enantioselective Alkene Hydrogenation (Yongxiang Chi, Wenjun Tang, and Xumu Zhang). -- 27 Bidentate Ligands Containing a Heteroatom-Phosphorus Bond (Stanton H.L. Kok, Terry T.-L. Au-Yeung, Hong Yee Cheung, Wing Sze Lam, Shu Sun Chan, and Albert S. C. Chan). -- 28 Enantioselective Alkene Hydrogenation: Monodentate Ligands (Michel van den Berg, Ben L. Feringa, and Adriaan J. Minnaard). -- 29 P,N and Non-Phosphorus Ligands (Andreas Pfaltz and Sharon Bell). -- 30 Enantioselective Hydrogenation of Unfunctionalized Alkenes (Andreas Pfaltz and Sharon Bell). -- 31 Mechanism of Enantioselective Hydrogenation (John M. Brown). -- 32 Enantioselective Ketone and β-Keto Ester Hydrogenations (Including Mechanisms) (Takeshi Ohkuma and Ryoji Noyori). -- 33 Rhodium-Catalyzed Enantioselective Hydrogenation of Functionalized Ketones (André Mortreux and Abdallah Karim). -- 34 Enantioselective Hydrogenation of C=N Functions and Enamines (Felix Spindler and Hans-Ulrich Blaser). -- 35 Enantioselective Transfer Hydrogenation (A. John Blacker). -- 36 High-Throughput Experimentation and Ligand Libraries (Johannes G. de Vries and Laurent Lefort). -- 37 Industrial Applications (Hans-Ulrich Blaser, Felix Spindler, and Marc Thommen). -- Part V Phase Separation in Homogeneous Hydrogenation. -- 38 Two-Phase Aqueous Hydrogenations (Ferenc Joó and Ágnes Kathó). -- 39 Supercritical and Compressed Carbon Dioxide as Reaction Medium and Mass Separating Agent for Hydrogenation Reactions using Organometallic Catalysts (Walter Leitner). -- 40 Fluorous Catalysts and Fluorous Phase Catalyst Separation for Hydrogenation Catalysis (Elwin de Wolf and Berth-Jan Deelman). -- 41 Catalytic Hydrogenation using Ionic Liquids as Catalyst Phase (Peter Wasserscheid and Peter Schulz).
-- 42 Immobilization Techniques (Imre Tóth and Paul C. van Geem). -- Part VI Miscellaneous Topics in Homogeneous Hydrogenation 43 Transition Metal-Catalyzed Regeneration of Nicotinamide Cofactors (Stephan Lütz). -- 44 Catalyst Inhibition and Deactivation in Homogeneous Hydrogenation (Detlef Heller, André H.M. de Vries, and Johannes G. de Vries). -- 45 Chemical Reaction Engineering Aspects of Homogeneous Hydrogenations (Claude de Bellefon and Nathalie Pestre). -- Subject Index.
Record Nr. UNINA-9910678053303321
Vries Johannes G. de  
[Place of publication not identified], : John Wiley & Sons Incorporated, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui