Absolute dimensions of Karman vortex motion / / by Werner Heisenberg |
Autore | Heisenberg Werner <1901-1976, > |
Pubbl/distr/stampa | [Washington, D.C.] : , : National Advisory Committee for Aeronautics, , 1923 |
Descrizione fisica | 1 online resource (10 pages, 1 unnumbered page) : illustrations |
Collana | Technical notes / National Advisory Committee for Aeronautics |
Soggetto topico |
Vortex-motion - Mathematical models
Fluid dynamics Hydrodynamics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910713458403321 |
Heisenberg Werner <1901-1976, >
![]() |
||
[Washington, D.C.] : , : National Advisory Committee for Aeronautics, , 1923 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in water resources [[e-journal]] |
Pubbl/distr/stampa | [England], : Elsevier Science Ltd |
Soggetto topico |
Hydraulic engineering
Hydrodynamics |
Soggetto genere / forma | Periodicals. |
ISSN | 1872-9657 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti | Adv. water resources |
Record Nr. | UNISA-996216438303316 |
[England], : Elsevier Science Ltd | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in water resources |
Pubbl/distr/stampa | [England], : Elsevier Science Ltd |
Soggetto topico |
Hydraulic engineering
Hydrodynamics Industrial water supply Water-supply Water Supply Technologie hydraulique - Périodiques Hydrodynamique Eau - Approvisionnement industriel Technologie hydraulique Eau - Approvisionnement Hydrologie Zeitschrift Online-Ressource |
Soggetto genere / forma | Periodicals. |
ISSN | 1872-9657 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910143338203321 |
[England], : Elsevier Science Ltd | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis and modelling of non-steady flow in pipe and channel networks [[electronic resource] /] / Vinko Jovic |
Autore | Jovic Vinko |
Pubbl/distr/stampa | Hoboken, : Wiley-Blackwell, 2013 |
Descrizione fisica | 1 online resource (545 p.) |
Disciplina | 621.8/672 |
Soggetto topico |
Pipe - Hydrodynamics
Hydrodynamics |
ISBN |
1-118-53689-4
1-299-27744-6 1-118-53687-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ANALYSIS AND MODELLING OF NON-STEADY FLOW IN PIPE AND CHANNEL NETWORKS; Contents; Preface; 1 Hydraulic Networks; 1.1 Finite element technique; 1.1.1 Functional approximations; 1.1.2 Discretization, finite element mesh; 1.1.3 Approximate solution of differential equations; 1.2 Unified hydraulic networks; 1.3 Equation system; 1.3.1 Elemental equations; 1.3.2 Nodal equations; 1.3.3 Fundamental system; 1.4 Boundary conditions; 1.4.1 Natural boundary conditions; 1.4.2 Essential boundary conditions; 1.5 Finite element matrix and vector; Reference; Further reading
2 Modelling of Incompressible Fluid Flow 2.1 Steady flow of an incompressible fluid; 2.1.1 Equation of steady flow in pipes; 2.1.2 Subroutine Steady Pipe Mtx; 2.1.3 Algorithms and procedures; 2.1.4 Frontal procedure; 2.1.5 Frontal solution of steady problem; 2.1.6 Steady test example; 2.2 Gradually varied flow in time; 2.2.1 Time-dependent variability; 2.2.2 Quasi non-steady model; 2.2.3 Subroutine Quasi Unsteady Pipe Mtx; 2.2.4 Frontal solution of unsteady problem; 2.2.5 Quasi-unsteady test example; 2.3 Unsteady flow of an incompressible fluid; 2.3.1 Dynamic equation 2.3.2 Subroutine Rgd Unsteady Pipe Mtx2.3.3 Incompressible fluid acceleration; 2.3.4 Acceleration test; 2.3.5 Rigid test example; References; Further Reading; 3 Natural Boundary Condition Objects; 3.1 Tank object; 3.1.1 Tank dimensioning; 3.1.2 Tank model; 3.1.3 Tank test examples; 3.2 Storage; 3.2.1 Storage equation; 3.2.2 Fundamental system vector and matrix updating; 3.3 Surge tank; 3.3.1 Surge tank role in the hydropower plant; 3.3.2 Surge tank types; 3.3.3 Equations of oscillations in the supply system; 3.3.4 Cylindrical surge tank 3.3.5 Model of a simple surge tank with upper and lower chamber 3.3.6 Differential surge tank model; 3.3.7 Example; 3.4 Vessel; 3.4.1 Simple vessel; 3.4.2 Vessel with air valves; 3.4.3 Vessel model; 3.4.4 Example; 3.5 Air valves; 3.5.1 Air valve positioning; 3.5.2 Air valve model; 3.6 Outlets; 3.6.1 Discharge curves; 3.6.2 Outlet model; Reference; Further reading; 4 Water Hammer - Classic Theory; 4.1 Description of the phenomenon; 4.1.1 Travel of a surge wave following the sudden halt of a locomotive; 4.1.2 Pressure wave propagation after sudden valve closure 4.1.3 Pressure increase due to a sudden flow arrest - the Joukowsky water hammer 4.2 Water hammer celerity; 4.2.1 Relative movement of the coordinate system; 4.2.2 Differential pressure and velocity changes at the water hammer front; 4.2.3 Water hammer celerity in circular pipes; 4.3 Water hammer phases; 4.3.1 Sudden flow stop, velocity change v0 ? 0; 4.3.2 Sudden pipe filling, velocity change 0 ? v0; 4.3.3 Sudden filling of blind pipe, velocity change 0 ? v0; 4.3.4 Sudden valve opening; 4.3.5 Sudden forced inflow; 4.4 Under-pressure and column separation; 4.5 Influence of extreme friction 4.6 Gradual velocity changes |
Record Nr. | UNINA-9910139233503321 |
Jovic Vinko
![]() |
||
Hoboken, : Wiley-Blackwell, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis and modelling of non-steady flow in pipe and channel networks / / Vinko Jovic |
Autore | Jovic Vinko |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, : Wiley-Blackwell, 2013 |
Descrizione fisica | 1 online resource (545 p.) |
Disciplina | 621.8/672 |
Soggetto topico |
Pipe - Hydrodynamics
Hydrodynamics |
ISBN |
1-118-53689-4
1-299-27744-6 1-118-53687-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ANALYSIS AND MODELLING OF NON-STEADY FLOW IN PIPE AND CHANNEL NETWORKS; Contents; Preface; 1 Hydraulic Networks; 1.1 Finite element technique; 1.1.1 Functional approximations; 1.1.2 Discretization, finite element mesh; 1.1.3 Approximate solution of differential equations; 1.2 Unified hydraulic networks; 1.3 Equation system; 1.3.1 Elemental equations; 1.3.2 Nodal equations; 1.3.3 Fundamental system; 1.4 Boundary conditions; 1.4.1 Natural boundary conditions; 1.4.2 Essential boundary conditions; 1.5 Finite element matrix and vector; Reference; Further reading
2 Modelling of Incompressible Fluid Flow 2.1 Steady flow of an incompressible fluid; 2.1.1 Equation of steady flow in pipes; 2.1.2 Subroutine Steady Pipe Mtx; 2.1.3 Algorithms and procedures; 2.1.4 Frontal procedure; 2.1.5 Frontal solution of steady problem; 2.1.6 Steady test example; 2.2 Gradually varied flow in time; 2.2.1 Time-dependent variability; 2.2.2 Quasi non-steady model; 2.2.3 Subroutine Quasi Unsteady Pipe Mtx; 2.2.4 Frontal solution of unsteady problem; 2.2.5 Quasi-unsteady test example; 2.3 Unsteady flow of an incompressible fluid; 2.3.1 Dynamic equation 2.3.2 Subroutine Rgd Unsteady Pipe Mtx2.3.3 Incompressible fluid acceleration; 2.3.4 Acceleration test; 2.3.5 Rigid test example; References; Further Reading; 3 Natural Boundary Condition Objects; 3.1 Tank object; 3.1.1 Tank dimensioning; 3.1.2 Tank model; 3.1.3 Tank test examples; 3.2 Storage; 3.2.1 Storage equation; 3.2.2 Fundamental system vector and matrix updating; 3.3 Surge tank; 3.3.1 Surge tank role in the hydropower plant; 3.3.2 Surge tank types; 3.3.3 Equations of oscillations in the supply system; 3.3.4 Cylindrical surge tank 3.3.5 Model of a simple surge tank with upper and lower chamber 3.3.6 Differential surge tank model; 3.3.7 Example; 3.4 Vessel; 3.4.1 Simple vessel; 3.4.2 Vessel with air valves; 3.4.3 Vessel model; 3.4.4 Example; 3.5 Air valves; 3.5.1 Air valve positioning; 3.5.2 Air valve model; 3.6 Outlets; 3.6.1 Discharge curves; 3.6.2 Outlet model; Reference; Further reading; 4 Water Hammer - Classic Theory; 4.1 Description of the phenomenon; 4.1.1 Travel of a surge wave following the sudden halt of a locomotive; 4.1.2 Pressure wave propagation after sudden valve closure 4.1.3 Pressure increase due to a sudden flow arrest - the Joukowsky water hammer 4.2 Water hammer celerity; 4.2.1 Relative movement of the coordinate system; 4.2.2 Differential pressure and velocity changes at the water hammer front; 4.2.3 Water hammer celerity in circular pipes; 4.3 Water hammer phases; 4.3.1 Sudden flow stop, velocity change v0 ? 0; 4.3.2 Sudden pipe filling, velocity change 0 ? v0; 4.3.3 Sudden filling of blind pipe, velocity change 0 ? v0; 4.3.4 Sudden valve opening; 4.3.5 Sudden forced inflow; 4.4 Under-pressure and column separation; 4.5 Influence of extreme friction 4.6 Gradual velocity changes |
Record Nr. | UNINA-9910826126203321 |
Jovic Vinko
![]() |
||
Hoboken, : Wiley-Blackwell, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biological and bio-inspired fluid dynamics : theory and application / / David E. Rival |
Autore | Rival David E. |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (187 pages) |
Disciplina | 532.05 |
Soggetto topico |
Fluid dynamics
Biomechanics Hydrodynamics |
ISBN |
9783030902711
9783030902704 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522956703321 |
Rival David E.
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Capillary channel flow (CCF) EU2 02 on the International Space Station (ISS) : an experimental investigation of passive bubble separations in an open capillary channel / / Mark M. Weislogel [and eleven others] |
Autore | Weislogel Mark M. |
Pubbl/distr/stampa | Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , June 2015 |
Descrizione fisica | 1 online resource (62 pages) : color illustrations |
Collana | NASA/TM |
Soggetto topico |
Capillary flow
Computational fluid dynamics Gravitational effects Hydrodynamics Microgravity |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Capillary channel flow |
Record Nr. | UNINA-9910707003003321 |
Weislogel Mark M.
![]() |
||
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , June 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines [[electronic resource] /] / D. Matha ... [and others] |
Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, , 2011 |
Descrizione fisica | 1 online resource (10 unnumbered pages) : illustrations |
Altri autori (Persone) | MathaDenis |
Collana | Conference paper NREL/CP |
Soggetto topico |
Aerodynamics
Hydrodynamics Wind turbines Offshore electric power plants |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910703228303321 |
Golden, CO : , : National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Collective Phenomena in Plasmas and Elsewhere : Kinetic and Hydrodynamic Approaches |
Autore | Ourabah Kamel |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (192 pages) |
Soggetto topico |
Kinetic theory of matter
Hydrodynamics |
ISBN |
9781394236756
1394236751 9781394236732 1394236735 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- Part 1. Theory -- Chapter 1. Kinetic Theory -- 1.1. The impossibility of an accurate approach -- 1.2. Boltzmann equation -- 1.3. Collision term -- 1.3.1. Absence of collisions: Vlasov equation -- 1.3.2. Bhatnagar-Gross-Krook relaxation model -- 1.3.3. Boltzmann collision integral -- 1.3.4. Fokker-Planck collision term -- 1.4. Steady state: Boltzmann distribution -- 1.5. Maxwell-Boltzmann distribution: properties -- 1.6. H-theorem -- 1.7. Paradoxes related to H-theorem -- 1.7.1. Loschmidt's paradox of irreversibility -- 1.7.2. Zermelo paradox -- Chapter 2. Hydrodynamic Approach -- 2.1. Fluid model: a heuristic approach -- 2.2. Macroscopic transport equation -- 2.3. Fluid model -- 2.4. Pressure tensor -- 2.4.1. Isotropic pressure -- 2.4.2. Anisotropic pressure -- 2.5. A deadlock in the fluid model: closure relationships -- 2.5.1. Zero pressure -- 2.5.2. Isothermal pressure -- 2.6. The collision effect -- Chapter 3. Quantum Models -- 3.1. Physical interest -- 3.2. Quantum hydrodynamic model -- 3.3. Quantum kinetic approach: Wigner-Moyal theory -- 3.3.1. Wigner distribution -- 3.3.2. Weyl transformation -- 3.3.3. Evolution of the Wigner distribution -- Chapter 4. General Relativity -- 4.1. Relativistic hydrodynamics -- 4.1.1. Conservation equations -- 4.1.2. Hydrodynamics in special relativity -- 4.1.3. Hydrodynamic model in general relativity -- 4.2. Relativistic kinetic theory -- 4.2.1. Basic concepts -- 4.2.2. Formulation of kinetic theory -- 4.2.3. Collision integral -- 4.2.4. Boltzmann equation in general relativity -- 4.2.5. H-theorem -- 4.2.6. Equilibrium state: Jüttner distribution -- Part 2. Applications -- Chapter 5. Plasmas -- 5.1. Electronic oscillations in classical plasmas: a hydrodynamic approach -- 5.2. Ion waves: hydrodynamic approach.
5.3. Classic plasmas: kinetic approach -- 5.4. Quantification of electronic oscillations: hydrodynamic and kinetic approaches -- 5.5. In a relativistic plasma: kinetic approach -- 5.6. Beyond the linear approach: the Korteweg-De Vries equation -- Chapter 6. Gravitational Systems -- 6.1. Jeans instability: hydrodynamic approach -- 6.2. Kinetic approach and collision effect -- 6.3. Jeans instability in the presence of dark matter -- 6.3.1. Kinetic approach -- 6.3.2. Hydrodynamic approach -- 6.4. Jeans instability: alternative theories -- Chapter 7. Bose-Einstein Condensates -- 7.1. Quantum hydrodynamic representation -- 7.2. Quantum kinetic representation -- 7.3. Kinetic approach to Bogoliubov oscillations -- Chapter 8. Cosmology and Dark Matter Models -- 8.1. Hydrodynamics of the Universe -- 8.1.1. Perturbation in a static Universe -- 8.1.2. Perturbations in an expanding Universe -- 8.2. Dark matter models -- 8.2.1. Hydrodynamic representation -- 8.2.2. Kinetic representation -- Appendix. Language of Relativity -- References -- Index -- EULA. |
Record Nr. | UNINA-9910877552203321 |
Ourabah Kamel
![]() |
||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Corrosion science : modern trends and applications / / editors, N. Suresh Kumar, P. Banerjee, H. Manjunatha |
Pubbl/distr/stampa | Singapore : , : Bentham Science Publishers, , [2021] |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 354.81150006 |
Soggetto topico | Hydrodynamics |
ISBN | 981-14-8183-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910794566803321 |
Singapore : , : Bentham Science Publishers, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|