Algebraic cycles and hodge theory : lectures given at the 2nd session of the centro internazionale matematico estivo (C. I. M. E. ) held in Torino, Italy, June 21 - 29 1993 / / M. Green, J. Murre, C. Voisin ; editors A. Albano, F. Bardelli |
Autore | Green M. |
Edizione | [1st ed. 1994.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer-Verlag, , [1994] |
Descrizione fisica | 1 online resource (VIII, 276 p.) |
Disciplina | 516.35 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Algebraic cycles
Hodge theory |
ISBN | 3-540-49046-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Contents: M. Green: Infinitesimal methods in Hodge theory -- J.P. Murre: Algebraic cycles and algebraic aspects of cohomology and k-theory -- C. Voisin: Transcendental methods in the study of algebraic cycles -- P. Pirola: The infinitesimal invariant of C(+)-C(-) -- B. van Geemen: An introduction to the Hodge conjecture for abelian varieties -- S. Müller-Stach: A remark on height pairings. |
Record Nr. | UNISA-996466653303316 |
Green M. | ||
Berlin ; ; Heidelberg : , : Springer-Verlag, , [1994] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Algebraic geometry III : complex algebraic varieties, algebraic curves and their Jacobians / A. N. Parshin, I. R. Shafarevich, eds. |
Autore | Parshin, A. N. |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1998 |
Descrizione fisica | 270 p. : ill. ; 25 cm. |
Disciplina | 512.33 |
Altri autori (Persone) | Shafarevich, Igor Rostislavovich |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 36 |
Soggetto topico |
Algebraic curves
Algebraic geometry Algebraic varieties Hodge theory Jacobians |
ISBN | 3540546812 |
Classificazione |
AMS 00A20
AMS 14-02 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000659459707536 |
Parshin, A. N. | ||
Berlin : Springer-Verlag, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910480401303321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910480643203321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910788743303321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910788743603321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910819099103321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910812437703321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
Autore | Kato Kazuya (Kazuya) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
Descrizione fisica | 1 online resource (349 p.) |
Disciplina | 514/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hodge theory
Logarithms |
Soggetto genere / forma | Electronic books. |
ISBN |
1-4008-3711-1
0-691-13822-2 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
Record Nr. | UNINA-9910465704203321 |
Kato Kazuya (Kazuya) | ||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
Autore | Kato Kazuya (Kazuya) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
Descrizione fisica | 1 online resource (349 p.) |
Disciplina | 514/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hodge theory
Logarithms |
Soggetto non controllato |
Algebraic group
Algebraic variety Analytic manifold Analytic space Annulus (mathematics) Arithmetic group Atlas (topology) Canonical map Classifying space Coefficient Cohomology Compactification (mathematics) Complex manifold Complex number Congruence subgroup Conjecture Connected component (graph theory) Continuous function Convex cone Degeneracy (mathematics) Diagram (category theory) Differential form Direct image functor Divisor Elliptic curve Equivalence class Existential quantification Finite set Functor Geometry Hodge structure Hodge theory Homeomorphism Homomorphism Inverse function Iwasawa decomposition Local homeomorphism Local ring Local system Logarithmic Maximal compact subgroup Modular curve Modular form Moduli space Monodromy Monoid Morphism Natural number Nilpotent orbit Nilpotent Open problem Open set P-adic Hodge theory P-adic number Point at infinity Proper morphism Pullback (category theory) Quotient space (topology) Rational number Relative interior Ring (mathematics) Ring homomorphism Scientific notation Set (mathematics) Sheaf (mathematics) Smooth morphism Special case Strong topology Subgroup Subobject Subset Surjective function Tangent bundle Taylor series Theorem Topological space Topology Transversality (mathematics) Two-dimensional space Vector bundle Vector space Weak topology |
ISBN |
1-4008-3711-1
0-691-13822-2 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
Record Nr. | UNINA-9910791746503321 |
Kato Kazuya (Kazuya) | ||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|