Geothermal heat pump and heat engine systems : theory and practice / / Andrew Chiasson
| Geothermal heat pump and heat engine systems : theory and practice / / Andrew Chiasson |
| Autore | Chiasson Andrew <1966-> |
| Pubbl/distr/stampa | Chichester, England : , : ASME Press : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (494 p.) |
| Disciplina | 697 |
| Collana | Wiley-ASME Press Series |
| Soggetto topico |
Ground source heat pump systems
Heat pumps - Thermodynamics Heat-engines - Thermodynamics |
| ISBN |
1-5231-5490-X
1-118-96196-X 1-118-96197-8 1-118-96195-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page ; Copyright; Contents; Series Preface; Preface; About the Companion Website; Chapter 1 Geothermal Energy Project Considerations ; 1.1 Overview; 1.2 Renewable/Clean Energy System Analysis; 1.3 Elements of Renewable/Clean Energy Systems; 1.4 Geothermal Energy Utilization and Resource Temperature; 1.5 Geothermal Energy Project History and Development; 1.5.1 Geothermal Power Plants; 1.5.2 Direct Uses of Geothermal Energy; 1.5.3 Geothermal Heat Pumps; 1.6 Chapter Summary; Discussion Questions and Exercise Problems ; Part 1 Geothermal Energy - Utilization and Resource Characterization
Chapter 2 Geothermal Process Loads 2.1 Overview; 2.2 Weather Data; 2.3 Space Heating and Cooling Loads; 2.3.1 Peak Design Loads; 2.3.2 Monthly and Annual Loads; 2.4 Hot Water Process Loads; 2.5 Swimming Pool and Small Pond Heating Loads; 2.6 Snow-Melting Loads; 2.7 Chapter Summary; Discussion Questions and Exercise Problems ; Chapter 3 Characterizing the Resource ; 3.1 Overview; 3.2 Origin and Structure of the Earth; 3.3 Geology and Drilling Basics for Energy Engineers; 3.3.1 `Geology 101 ́for Energy Engineers; 3.3.2 Overview of Drilling Methods 3.4 Earth Temperature Regime and Global Heat Flows: Why is the Center of the Earth Hot?3.5 Shallow Earth Temperatures; 3.6 The Geothermal Reservoir Concept; 3.7 Geothermal Site Suitability Analysis; 3.7.1 Groundwater Resources; 3.7.2 Geoexchange Applications; 3.8 Chapter Summary; Discussion Questions and Exercise Problems ; Part 2 Harnessing the Resource ; Chapter 4 Groundwater Heat Exchange Systems ; 4.1 Overview; 4.2 Why Groundwater?; 4.3 Theoretical Considerations; 4.3.1 Equations of Groundwater Flow; 4.3.2 Well Hydraulics; 4.3.3 Heat Transport in Groundwater; 4.4 Practical Considerations 4.4.1 Equipment Needed4.4.2 Groundwater Quality; 4.5 Groundwater Heat Pump Systems; 4.5.1 Small Residential Systems; 4.5.2 Large Commercial Distributed Heat Pump Systems; 4.5.3 System Energy Analysis and the Required Groundwater Flow Rate; 4.5.4 Well Pump Control; 4.5.5 Single Supply-Return Well Systems; 4.6 Chapter Summary; Discussion Questions and Exercise Problems ; Chapter 5 Borehole Heat Exchangers ; 5.1 Overview of Borehole Heat Exchangers (BHEs); 5.2 What is a Borehole Heat Exchanger?; 5.3 Brief Historical Overview of BHEs; 5.4 Installation of BHEs 5.5 Thermal and Mathematical Considerations for BHEs5.5.1 General BHE Thermal Considerations; 5.5.2 Mathematical Models of Heat Transfer around BHEs; 5.5.3 Determining the BHE Fluid Temperature; 5.5.4 Fluctuating Thermal Loads; 5.5.5 Effects of Groundwater Flow on BHEs; 5.5.6 Mathematical Models of the Borehole Thermal Resistance; 5.6 Thermal Response Testing; 5.6.1 Field Methods; 5.6.2 Analysis Methods of Field Test Data; 5.7 Pressure Considerations for Deep Vertical Boreholes; 5.8 Special Cases; 5.8.1 Standing Column Wells Revisited; 5.8.2 Heat Pipes; 5.9 Chapter Summary Discussion Questions and Exercise Problems |
| Record Nr. | UNINA-9910135044703321 |
Chiasson Andrew <1966->
|
||
| Chichester, England : , : ASME Press : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications / / Alec Feinberg, Ph.D
| Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications / / Alec Feinberg, Ph.D |
| Autore | Feinberg Alec |
| Pubbl/distr/stampa | West Sussex, [England] : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (265 p.) |
| Disciplina | 620.1/61 |
| Collana | Wiley Series in Quality & Reliability Engineering |
| Soggetto topico |
Heat-engines - Thermodynamics
Metals - Fatigue Metals - Testing Thermodynamic equilibrium |
| ISBN |
1-119-27627-6
1-119-27624-1 1-119-27625-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Copyright; Contents; List of Figures; List of Tables ; About the Author ; Preface; Chapter 1 Equilibrium Thermodynamic Degradation Science ; 1.1 Introduction to a New Science; 1.2 Categorizing Physics of Failure Mechanisms; 1.3 Entropy Damage Concept; 1.3.1 The System (Device) and its Environment; 1.3.2 Irreversible Thermodynamic Processes Cause Damage; 1.4 Thermodynamic Work; 1.5 Thermodynamic State Variables and their Characteristics; 1.6 Thermodynamic Second Law in Terms of System Entropy Damage; 1.6.1 Thermodynamic Entropy Damage Axiom; 1.6.2 Entropy and Free Energy
1.7 Work, Resistance, Generated Entropy, and the Second Law1.8 Thermodynamic Catastrophic and Parametric Failure; 1.8.1 Equilibrium and Non-Equilibrium Aging States in Terms of the Free Energy or Entropy Change; 1.9 Repair Entropy; 1.9.1 Example 1.1: Repair Entropy: Relating Non-Damage Entropy Flow to Entropy Damage; Summary ; References; Chapter 2 Applications of Equilibrium Thermodynamic Degradation to Complex and Simple Systems: Entropy Damage, Vibration, Temperature, Noise Analysis, and Thermodynamic Potentials ; 2.1 Cumulative Entropy Damage Approach in Physics of Failure 2.1.1 Example 2.1: Minerś Rule Derivation2.1.2 Example 2.2: Minerś Rule Example; 2.1.3 Non-Cyclic Applications of Cumulative Damage; 2.2 Measuring Entropy Damage Processes; 2.3 Intermediate Thermodynamic Aging States and Sampling; 2.4 Measures for System-Level Entropy Damage; 2.4.1 Measuring System Entropy Damage with Temperature; 2.4.2 Example 2.3: Resistor Aging; 2.4.3 Example 2.4: Complex Resistor Bank; 2.4.4 System Entropy Damage with Temperature Observations; 2.4.5 Example 2.5: Temperature Aging of an Operating System 2.4.6 Comment on High-Temperature Aging for Operating and Non-Operating Systems2.5 Measuring Randomness due to System Entropy Damage with Mesoscopic Noise Analysis in an Operating System; 2.5.1 Example 2.6: Gaussian Noise Vibration Damage; 2.5.2 Example 2.7: System Vibration Damage Observed with Noise Analysis; 2.6 How System Entropy Damage Leads to Random Processes; 2.6.1 Stationary versus Non-Stationary Entropy Process; 2.7 Example 2.8: Human Heart Rate Noise Degradation; 2.8 Entropy Damage Noise Assessment Using Autocorrelation and the Power Spectral Density 2.8.1 Noise Measurements Rules of Thumb for the PSD and R2.8.2 Literature Review of Traditional Noise Measurement; 2.8.3 Literature Review for Resistor Noise; 2.9 Noise Detection Measurement System; 2.9.1 System Noise Temperature; 2.9.2 Environmental Noise Due to Pollution; 2.9.3 Measuring System Entropy Damage using Failure Rate; 2.10 Entropy Maximize Principle: Combined First and Second Law; 2.10.1 Example 2.9: Thermal Equilibrium; 2.10.2 Example 2.10: Equilibrium with Charge Exchange; 2.10.3 Example 2.11: Diffusion Equilibrium; 2.10.4 Example 2.12: Available Work 2.11 Thermodynamic Potentials and Energy States |
| Record Nr. | UNINA-9910135018703321 |
Feinberg Alec
|
||
| West Sussex, [England] : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications / / Alec Feinberg, Ph.D
| Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications / / Alec Feinberg, Ph.D |
| Autore | Feinberg Alec |
| Pubbl/distr/stampa | West Sussex, [England] : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (265 p.) |
| Disciplina | 620.1/61 |
| Collana | Wiley Series in Quality & Reliability Engineering |
| Soggetto topico |
Heat-engines - Thermodynamics
Metals - Fatigue Metals - Testing Thermodynamic equilibrium |
| ISBN |
1-119-27627-6
1-119-27624-1 1-119-27625-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Copyright; Contents; List of Figures; List of Tables ; About the Author ; Preface; Chapter 1 Equilibrium Thermodynamic Degradation Science ; 1.1 Introduction to a New Science; 1.2 Categorizing Physics of Failure Mechanisms; 1.3 Entropy Damage Concept; 1.3.1 The System (Device) and its Environment; 1.3.2 Irreversible Thermodynamic Processes Cause Damage; 1.4 Thermodynamic Work; 1.5 Thermodynamic State Variables and their Characteristics; 1.6 Thermodynamic Second Law in Terms of System Entropy Damage; 1.6.1 Thermodynamic Entropy Damage Axiom; 1.6.2 Entropy and Free Energy
1.7 Work, Resistance, Generated Entropy, and the Second Law1.8 Thermodynamic Catastrophic and Parametric Failure; 1.8.1 Equilibrium and Non-Equilibrium Aging States in Terms of the Free Energy or Entropy Change; 1.9 Repair Entropy; 1.9.1 Example 1.1: Repair Entropy: Relating Non-Damage Entropy Flow to Entropy Damage; Summary ; References; Chapter 2 Applications of Equilibrium Thermodynamic Degradation to Complex and Simple Systems: Entropy Damage, Vibration, Temperature, Noise Analysis, and Thermodynamic Potentials ; 2.1 Cumulative Entropy Damage Approach in Physics of Failure 2.1.1 Example 2.1: Minerś Rule Derivation2.1.2 Example 2.2: Minerś Rule Example; 2.1.3 Non-Cyclic Applications of Cumulative Damage; 2.2 Measuring Entropy Damage Processes; 2.3 Intermediate Thermodynamic Aging States and Sampling; 2.4 Measures for System-Level Entropy Damage; 2.4.1 Measuring System Entropy Damage with Temperature; 2.4.2 Example 2.3: Resistor Aging; 2.4.3 Example 2.4: Complex Resistor Bank; 2.4.4 System Entropy Damage with Temperature Observations; 2.4.5 Example 2.5: Temperature Aging of an Operating System 2.4.6 Comment on High-Temperature Aging for Operating and Non-Operating Systems2.5 Measuring Randomness due to System Entropy Damage with Mesoscopic Noise Analysis in an Operating System; 2.5.1 Example 2.6: Gaussian Noise Vibration Damage; 2.5.2 Example 2.7: System Vibration Damage Observed with Noise Analysis; 2.6 How System Entropy Damage Leads to Random Processes; 2.6.1 Stationary versus Non-Stationary Entropy Process; 2.7 Example 2.8: Human Heart Rate Noise Degradation; 2.8 Entropy Damage Noise Assessment Using Autocorrelation and the Power Spectral Density 2.8.1 Noise Measurements Rules of Thumb for the PSD and R2.8.2 Literature Review of Traditional Noise Measurement; 2.8.3 Literature Review for Resistor Noise; 2.9 Noise Detection Measurement System; 2.9.1 System Noise Temperature; 2.9.2 Environmental Noise Due to Pollution; 2.9.3 Measuring System Entropy Damage using Failure Rate; 2.10 Entropy Maximize Principle: Combined First and Second Law; 2.10.1 Example 2.9: Thermal Equilibrium; 2.10.2 Example 2.10: Equilibrium with Charge Exchange; 2.10.3 Example 2.11: Diffusion Equilibrium; 2.10.4 Example 2.12: Available Work 2.11 Thermodynamic Potentials and Energy States |
| Record Nr. | UNINA-9910825950203321 |
Feinberg Alec
|
||
| West Sussex, [England] : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermodynamics of heat engines / / coordinated by Bernard Desmet
| Thermodynamics of heat engines / / coordinated by Bernard Desmet |
| Pubbl/distr/stampa | Hoboken : , : ISTE Ltd : , : John Wiley and Sons Inc, , [2022] |
| Descrizione fisica | 1 online resource (258 pages) |
| Disciplina | 621.4021 |
| Soggetto topico | Heat-engines - Thermodynamics |
| ISBN |
1-394-18819-6
1-394-18817-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Chapter 1. Energy Conversion: Thermodynamic Basics -- 1.1. Introduction -- 1.2. Principles of thermodynamics -- 1.2.1. Notion of a thermodynamic system -- 1.2.2. First law -- 1.2.3. Second law: mechanism of mechanical energy degradation in a heat engine -- 1.3. Thermodynamics of gases -- 1.3.1. Equations of state -- 1.3.2. Calorimetric coefficients -- 1.3.3. Ideal gas -- 1.3.4. Van der Waals gas -- 1.4. Conclusion -- 1.5. References -- Chapter 2. Internal Combustion Engines -- 2.1. Generalities - Operating principles -- 2.1.1. Introduction -- 2.1.2. Spark-ignition engines -- 2.1.3. Compression ignition engine -- 2.1.4. Expression of useful work -- 2.2. Theoretical air cycles -- 2.2.1. Hypotheses -- 2.2.2. Beau de Rochas cycle (Otto cycle) -- 2.2.3. Miller-Atkinson cycle -- 2.2.4. Diesel cycle -- 2.2.5. The limited pressure cycle (mixed cycle) -- 2.2.6. Comparison of theoretical air cycles -- 2.3. Influences of the thermophysical properties of the working fluid on the theoretical cycles -- 2.3.1. Thermophysical properties of the working fluid -- 2.3.2. Reversible adiabatic transformations -- 2.3.3. Mixed cycle for ideal and semi-ideal gases -- 2.4. Zero-dimensional thermodynamic models -- 2.4.1. Hypotheses -- 2.4.2. Single-zone model -- 2.4.3. Flow through the valves -- 2.4.4. Heat transfer with the cylinder walls -- 2.4.5. Combustion heat generation model -- 2.4.6. Two-zone model -- 2.5. Supercharging of internal combustion engines -- 2.5.1. Basic principles of supercharging -- 2.5.2. Supercharging by a driven compressor -- 2.5.3. Turbocharging -- 2.6. Conclusions and perspectives -- 2.7. References -- Chapter 3. Aeronautical and Space Propulsion -- 3.1. History and development of aeronautical means of propulsion.
3.2. Presentation of the aircraft system and its propulsive unit -- 3.2.1. Classification and presentation of the usual architectures of aeronautical engines and their specific uses -- 3.2.2. Study of the forces applied on the aircraft system during steady flight -- 3.2.3. Definition of the propulsion forces and specific quantities of the propulsion system -- 3.3. Operating cycle analysis -- 3.3.1. Hypotheses and limits of validity -- 3.3.2. Presentation of engine stations (SAE ARP 755 STANDARD) -- 3.3.3. Study of thermodynamic transformations and their representations in T- s diagrams -- 3.3.4. Study of the thermodynamic cycles for a gas turbine -- 3.3.5. Study of the thermodynamic cycle of a gas turbine, branch by branch -- 3.3.6. Improvements to the Joule-Brayton cycle -- 3.3.7. Thermodynamic improvements for a gas turbine using energy regeneration -- 3.3.8. Thermodynamic improvements for a gas turbine using staged compression and expansion -- 3.4. The actual engine -- 3.4.1. Development cycle of the turbomachine (turbojet) -- 3.4.2. Technical disciplines in development -- 3.4.3. Some specific problems of each module -- 3.4.4. Secondary air system design methods -- 3.4.5. T4 and the secondary air system -- 3.5. Perspectives -- 3.6. References -- Chapter 4. Combustion and Conversion of Energy -- 4.1. Generalities -- 4.1.1. Introduction -- 4.1.2. Premixed flame -- 4.1.3. Diffusion flame -- 4.1.4. Stabilization of a flame -- 4.1.5. Flammability of air-fuel mixtures -- 4.1.6. Combustion in internal combustion engines -- 4.2. Theoretical combustion reactions -- 4.2.1. Constituents of the combustible mixture -- 4.2.2. Combustion stoichiometry -- 4.2.3. Theoretical combustion of a lean mixture -- 4.2.4. Theoretical combustion of a rich mixture -- 4.3. Energy study of combustion -- 4.3.1. Combustion at constant volume. 4.3.2. Combustion at constant pressure -- 4.3.3. Relations between heating values -- 4.3.4. Adiabatic flame and explosion temperatures -- 4.4. Chemical kinetics of combustion -- 4.4.1. Chain reactions -- 4.4.2. Composition of a reactive mixture -- 4.4.3. Reaction rates -- 4.4.4. Establishing a chemical equilibrium -- 4.4.5. Equilibrium composition of the combustion products -- 4.4.6. Detailed chemical kinetics-formation of pollutants -- 4.5. Exergy analysis of combustion -- 4.5.1. Exergy of a gas mixture -- 4.5.2. Exergy production from a combustion reaction -- 4.5.3. Exergy of a fuel -- 4.6. Conclusion -- 4.7. References -- Chapter 5. Engines with an External Heat Supply -- 5.1. Introduction -- 5.2. The Stirling engine -- 5.2.1. Theoretical cycle -- 5.2.2. Characteristics of the Stirling engine -- 5.3. The Ericsson engine -- 5.3.1. Operating principles -- 5.3.2. Theoretical cycles -- 5.3.3. Improvements of the Ericsson engine -- 5.4. Perspectives -- 5.4.1. Advantages and disadvantages of Stirling and Ericsson engines -- 5.4.2. Perspectives of evolution of external combustion machines in the new decarbonized energy landscape -- 5.5. References -- Chapter 6. Energy Recovery - Waste Heat Recovery -- 6.1.Waste energy recovery -- 6.1.1. Energy balance of an internal combustion engine -- 6.1.2. Degradation of mechanizable energy into uncompensated heat -- 6.1.3. Exergy balance in internal combustion engines -- 6.1.4. Concept of energy recovery -- 6.2. Cogeneration in industrial facilities -- 6.2.1. Cogenerating gas turbines -- 6.2.2. Cogenerating diesel engine -- 6.2.3. Comparative cogeneration efficiencies -- 6.2.4. Complex depressurized cycle -- 6.2.5. Complex over-expansion cycle -- 6.2.6. Conclusion -- 6.3. Micro-cogeneration -- 6.3.1. Introduction -- 6.3.2. Classification -- 6.3.3. Internal combustion engines -- 6.3.4. Gas micro-turbines. 6.3.5. Fuel cells -- 6.3.6. Thermoelectricity -- 6.3.7. Thermoacoustics -- 6.3.8. "Rankinized" cycles -- 6.4. Conclusion -- 6.5. Perspectives -- 6.6. References -- List of Authors -- Index -- EULA. |
| Record Nr. | UNINA-9910830731303321 |
| Hoboken : , : ISTE Ltd : , : John Wiley and Sons Inc, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||