top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cyrus H. McCormick. May 16, 1856. -- Reported from the Court of Claims. Committed to a Committee of the Whole House, and ordered to be printed
Cyrus H. McCormick. May 16, 1856. -- Reported from the Court of Claims. Committed to a Committee of the Whole House, and ordered to be printed
Pubbl/distr/stampa [Washington, D.C.] : , : [publisher not identified], , 1856
Descrizione fisica 1 online resource (22 pages)
Collana Report C.C. /34th Congress, 1st session. House
[United States congressional serial set ]
Soggetto topico Claims
Harvesting machinery
Inventions
Judicial opinions
Patent extensions
Soggetto genere / forma Legislative materials.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910715887903321
[Washington, D.C.] : , : [publisher not identified], , 1856
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
In the Senate of the United States. April 2, 1856. -- Referred to the Committee on Claims. April 17, 1856. -- Committee discharged and referred to the Committee on Patents and the Patent Office. December 18, 1857. -- Referred to the Committee on Claims. The Court of Claims submitted the following report ... Cyrus H. McCormick vs. the United States .
In the Senate of the United States. April 2, 1856. -- Referred to the Committee on Claims. April 17, 1856. -- Committee discharged and referred to the Committee on Patents and the Patent Office. December 18, 1857. -- Referred to the Committee on Claims. The Court of Claims submitted the following report ... Cyrus H. McCormick vs. the United States .
Pubbl/distr/stampa [Washington, D.C.] : , : [publisher not identified], , 1857
Descrizione fisica 1 online resource (5 pages)
Collana Mis. doc. / 35th Congress, 1st session. Senate
[United States congressional serial set ]
Soggetto topico Claims
Harvesting machinery
Inventions
Inventors
Judicial opinions
Patent extensions
Patents
Soggetto genere / forma Legislative materials.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910715843503321
[Washington, D.C.] : , : [publisher not identified], , 1857
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Moore and Hascall's harvesting machine. Resolutions of the Legislature of Michigan, relative to Moore and Hascall's harvesting machine. December 31, 1849. Referred to the Committee on Patents, and ordered to be printed
Moore and Hascall's harvesting machine. Resolutions of the Legislature of Michigan, relative to Moore and Hascall's harvesting machine. December 31, 1849. Referred to the Committee on Patents, and ordered to be printed
Pubbl/distr/stampa [Washington, D.C.] : , : [publisher not identified], , 1849
Descrizione fisica 1 online resource (2 pages)
Collana Mis. doc. / 31st Congress, 1st session. House
[United States congressional serial set ]
Soggetto topico Agricultural innovations
Harvesting machinery
Inventions
Resolutions, Legislative
Patent extensions
Soggetto genere / forma Legislative materials.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910715746603321
[Washington, D.C.] : , : [publisher not identified], , 1849
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rapid damage-free robotic harvesting of tomatoes / / Jizhan Liu, Zhiguo Li and Pingping Li
Rapid damage-free robotic harvesting of tomatoes / / Jizhan Liu, Zhiguo Li and Pingping Li
Autore Liu Jizhan
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (469 pages)
Disciplina 681.7631
Collana Springer Tracts in Mechanical Engineering
Soggetto topico Harvesting machinery
Tomatoes - Harvesting - Machinery
ISBN 981-16-1284-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- 1 History and Present Situations of Robotic Harvesting Technology: A Review -- 1.1 An Industry of Fresh-Eat Fruits and Vegetables and Its Labor-Cost Harvesting -- 1.2 The History and Current Situation of the Development of Robotic Harvesting Equipment in Global -- 1.2.1 Tomato Harvesting Robots -- 1.2.2 Fruit Harvesting Robot for Orchards -- 1.2.3 Harvesting Robots for Fruits and Vegetables -- 1.2.4 Other Fruit Harvesting Robots -- 1.2.5 Other Harvesting Robots -- 1.3 Summary and Prospect -- 1.3.1 The Continuous Progress of Robotic Harvesting Technology -- 1.3.2 Technical Keys to the Development of Harvesting Robot Technology -- 1.3.3 The Historical Characteristics of the Technology Development of the Harvesting Robots -- 1.3.4 The Breakthrough Points of the Technology Development of Harvesting Robots -- 1.3.5 Key Fields of Technology Development of Harvesting Robots -- References -- 2 Damage and Damage-Free Harvesting in Robotic Operation -- 2.1 Cause of Fruit Damage in Robot Harvesting -- 2.2 Passive Compliant Structure in Robotic Harvesting -- 2.2.1 Elastic Surface Material -- 2.2.2 Under-Actuated End-Effectors -- 2.2.3 Elastic-Medium Fingers -- 2.3 Active Compliance Control in Robotic Harvesting -- 2.4 The Robotic Speedy Damage-Free Harvesting -- 2.4.1 The Significance and Particularity of Robotic Speedy Damage-Free Harvesting -- 2.4.2 The Particularity of the Collision in Robotic Speedy Gripping of Fruit -- 2.4.3 The Research System of Speedy Damage-Free Harvesting -- References -- 3 The Physical and Mechanical Properties of Tomato Fruit and Stem -- 3.1 Summary -- 3.1.1 Research Significance -- 3.1.2 Content and Innovation -- 3.2 The Physical/Mechanical Properties Index System of Tomato Fruit-Stem Related to Robot's Harvesting -- 3.3 Physical Properties of Tomato Fruit and Stem.
3.3.1 Structure of Tomato Fruit and Stem -- 3.3.2 Physical Property of Tomato Fruit and Stem [3-5] -- 3.4 Mechanical Properties of Tomato Fruit Components [3] -- 3.4.1 Material, Equipment, and Method -- 3.4.2 Results and Analysis -- 3.5 Compressive Mechanical Properties of the Whole Tomato -- 3.5.1 The Compression Force-Deformation Properties [4, 5] -- 3.5.2 Creep Properties [33] -- 3.5.3 Stress Relaxation Properties [33] -- 3.5.4 Load-Unload Properties [33] -- 3.6 Frictional Mechanical Properties of Tomato Fruits [3] -- 3.6.1 Static and Sliding Friction Coefficients -- 3.6.2 Measurement of Rolling Resistance Coefficient -- 3.7 Mechanical Structure Model of the Whole Tomato Fruit -- 3.7.1 The Wheel-like Simplification Mechanical Structure of Fruit [4, 46] -- 3.7.2 Mechanical Properties of Tomatoes with Different Numbers of Locules [3] -- 3.8 Mechanical Damage in Tomato Fruits [3] -- 3.8.1 Mechanical Damage Mechanism of Tomato Fruit -- 3.8.2 Physiological Change of Tomatoes After Being Compress -- 3.9 The Properties of Tomato Stem -- 3.9.1 Stem System [5, 81] -- 3.9.2 Mechanical Properties of Tomato Fruit System [4, 5] -- 3.9.3 Results [4, 5] -- References -- 4 Development of Damage-Free Hand-Arm System for Tomato Harvesting -- 4.1 Summary -- 4.1.1 Research Significance -- 4.1.2 Content and Innovation -- 4.2 Development of Damage-Free Harvesting End-Effector -- 4.2.1 System Scheme Design of Damage-Free Harvesting End-Effector -- 4.3 Motion Configuration Scheme -- 4.4 System Components of the End-Effector -- 4.4.1 Mechanism Design of End-Effector [81] -- 4.4.2 Design of the Sensing System [81] -- 4.4.3 Design of Control System [81] -- 4.4.4 Design of Power Supply System [81] -- 4.4.5 Structure Design of the End-Effector [81] -- 4.4.6 Prototype and Its Performance Indicators [81] -- 4.4.7 Upper Lower Type End-Effector.
4.4.8 Passive-active Coupled Compliant End-Effector for Robot Tomato Harvesting [95] -- 4.5 Damage-Free Harvesting Hand-arm System Based on Commercial Manipulator [96] -- 4.5.1 Background and Needs -- 4.5.2 The Control System Structure of Commercial Manipulator [31] -- 4.5.3 Control System Integration Between the Manipulator and the End-Effector [31, 34] -- References -- 5 Mathematical Modeling of Speedy Damage-Free Gripping of Fruit -- 5.1 Summary -- 5.1.1 Research Significance -- 5.1.2 Content and Innovation -- 5.2 Experiment of Speedy Fruit Gripping and Special Collision Characteristics -- 5.2.1 Experiment of Speedy Fruit Gripping [1, 2] -- 5.2.2 Collision Characteristics of Speedy Fruit Gripping -- 5.3 The Special Collision Issue of Speedy Fruit Gripping -- 5.4 Dynamic Characteristics in Different Phases of Speedy Fruit Gripping [1] -- 5.5 Fruit Compression Model [1, 3] -- 5.5.1 The Viscoelastic Properties of Fruit and the Characterization of Constitutive Model -- 5.5.2 Burger's Modified Model for Characterization of Creep Properties of Whole Fruit -- 5.6 Complex Collision Model in Speedy Gripping of Fruit [1] -- 5.6.1 Phase of Constant-Speed Loading and Phase of Stress Relaxing -- 5.6.2 Phase of Collision Decelerating -- 5.7 The Basic Law of Collision in Robotic Gripping of Fruit [1] -- 5.7.1 The Law of Collision Force in Robotic Gripping of Fruit -- 5.7.2 The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Time -- 5.7.3 The Influence of Initial Gripping Speed and Fruit Ripeness on Gripping Collision Deformation -- 5.7.4 The Influence of Initial Gripping Speed and Fruit Ripeness on Peak Collision Force -- 5.8 The Theoretical Calculation of the Time Consumption of Gripping [2] -- 5.8.1 The Stroke Composition of the Finger Gripping Process -- 5.8.2 Dimension Relation of Fruit Gripping with Robotic Fingers.
5.8.3 The Time Consumption Composition of the Finger Gripping Process -- 5.8.4 Selection of Damage-Free Control Mode -- 5.8.5 Time Calculation of Damage-Free Gripping -- 5.9 Collision Stage -- References -- 6 Simulation of Damage-Free Robotic Gripping of Fruit -- 6.1 Summary -- 6.1.1 Research Significance -- 6.1.2 Content and Innovation -- 6.2 Finite Element Model of Fruit -- 6.2.1 Viscoelastic Finite Element Model of the Whole Tomato Fruit [1] -- 6.2.2 Nonlinear Multi-component Finite Element Model of Tomato Fruit [3] -- 6.3 Simulation of Static Gripping Process [3] -- 6.3.1 Geometry Model Finger-Fruit Contacting Process -- 6.3.2 Creating Contact Pair -- 6.3.3 Model Verification Method -- 6.3.4 Prediction Method of Gripping Damage -- 6.3.5 The Component Stress Simulation of Different Loading Methods -- 6.4 Dynamic Simulation of Gripping Process [1] -- 6.4.1 The Software Implementation of Dynamic Gripping Simulation -- 6.4.2 The Establishment of System Virtual Prototype for Gripping -- 6.4.3 Simulation Analysis of Tomato Fruit Gripping with the End-Effector -- References -- 7 Modeling of the Vacuum Sucked Pulling of Tomato Fruit -- 7.1 Summary -- 7.1.1 Function of Vacuum Sucked Pulling in Robotic Harvesting [1] -- 7.1.2 Research Significance [1, 18] -- 7.1.3 Content and Innovation -- 7.2 Modeling of Mechanical Behavior for Sucking with Suction Pad -- 7.2.1 Mechanical Relation Between Suction Pad and Spherical Surface [1] -- 7.2.2 Experiment on Influence Factors of Suction Force -- 7.2.3 The Effect of Fruit Surface Contour on Pull-off Force -- 7.3 Mechanical Model of Vacuum Sucked Pulling -- 7.3.1 Kinematic and Force Balance Analyses of Pulling of On-plant Fruit with Suction Pad -- 7.3.2 Static Analysis of Pulling of On-plant Fruit with Suction Pad -- 7.3.3 Discussion -- 7.4 Probability Model of Sucked Pulling of On-plant Tomato Fruit [1].
7.4.1 Rate of Interference and Success of Fruit Gripping -- 7.4.2 The Proportion of Fruit Number Per Cluster for Different Harvesting Rounds -- 7.4.3 The Required Sucked Pulling Distance and Its Probability for Different Fruit Number in Each Cluster -- 7.4.4 Theoretical Influence of Required Sucked Pulling Distance on the Rate of Gripping Interference -- 7.4.5 Determination of Sucked Pulling Distance -- References -- 8 Fruit Detaching Methods for Robotic Damage-Free Tomato Harvesting -- 8.1 Summary -- 8.1.1 Research Significance -- 8.1.2 Content and Innovation -- 8.2 Theoretical and Experimental Comparison of Non-tool Fruit Detaching Methods [1, 2] -- 8.2.1 Non-tool Fruit Detaching Methods -- 8.2.2 Experiments of Non-tool Detaching of Tomato Fruit -- 8.2.3 Theory of Strength and Detachment of Abscission Layers -- 8.2.4 Discussion -- 8.3 Experimental Exploration of Laser Cutting of Stems [36, 37] -- 8.3.1 Put Forward Laser Cutting of Stems -- 8.3.2 The Principle and Advantages of Laser Cutting of Biomaterials [36, 43] -- 8.3.3 Particularity and Feasibility of Laser Cutting of Stem [36, 43] -- 8.3.4 Experiments on Laser Drilling and Cutting of Tomato Stems -- 8.3.5 Results and Discussion -- 8.3.6 Realization of Laser Cutting of Peduncles [43] -- 8.4 Discussion -- References -- 9 Control Optimization and Test Study -- 9.1 Summary -- 9.1.1 Research Significance -- 9.1.2 Content and Innovation -- 9.2 Parameter Optimization of Speedy Flexible Gripping [1] -- 9.2.1 PID Parameter Adjustment of the Motion Control System -- 9.2.2 Energy Consumption Analysis of Acceleration and Deceleration Stage -- 9.2.3 Speed Optimization of Speedy Flexible Gripping -- 9.3 Control Optimization of Vacuum Sucked Pulling [7] -- 9.3.1 The Relationship Between Maximum Pulling Speed and Displacement in Acceleration Stage.
9.3.2 The Relationship Between the Dynamic Pulling Force and the Threshold of Vacuum Degree.
Record Nr. UNINA-9910488725403321
Liu Jizhan  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui