The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang |
Autore | Lin Fanghua |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 514/.74 |
Altri autori (Persone) | WangChangyou <1967-> |
Soggetto topico |
Harmonic maps
Heat equation Riemannian manifolds |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-93808-4
9786611938086 981-277-953-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation 5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three 7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index |
Record Nr. | UNINA-9910454064403321 |
Lin Fanghua | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang |
Autore | Lin Fanghua |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 514/.74 |
Altri autori (Persone) | WangChangyou <1967-> |
Soggetto topico |
Harmonic maps
Heat equation Riemannian manifolds |
ISBN |
1-281-93808-4
9786611938086 981-277-953-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation 5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three 7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index |
Record Nr. | UNINA-9910782558103321 |
Lin Fanghua | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The analysis of harmonic maps and their heat flows / / Fanghua Lin, Changyou Wang |
Autore | Lin Fanghua |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 514/.74 |
Altri autori (Persone) | WangChangyou <1967-> |
Soggetto topico |
Harmonic maps
Heat equation Riemannian manifolds |
ISBN |
1-281-93808-4
9786611938086 981-277-953-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation 5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three 7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index |
Record Nr. | UNINA-9910814555403321 |
Lin Fanghua | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910480401303321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910480643203321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910788743303321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910788743603321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (262 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0474-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" ""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" ""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" ""24.1. Around smooth points of divisors"" |
Record Nr. | UNINA-9910819099103321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki |
Autore | Mochizuki Takuro <1972-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
Descrizione fisica | 1 online resource (344 p.) |
Disciplina | 514.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hodge theory
D-modules Vector bundles Harmonic maps |
ISBN | 1-4704-0473-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories"" ""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings"" ""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections"" |
Record Nr. | UNINA-9910812437703321 |
Mochizuki Takuro <1972-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Calculus of variations and harmonic maps / Hajime Urakawa ; translated by Hajime Urakawa |
Autore | Urakawa, Hajime |
Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, c1993 |
Descrizione fisica | xiii, 251 p. : ill. ; 26 cm |
Disciplina | 515.64 |
Collana | Translations of mathematical monographs, 0065-9282 ; 132 |
Soggetto topico |
Calculus of variations
Harmonic maps |
ISBN | 0821845810 |
Classificazione |
AMS 53C
AMS 58B AMS 58D AMS 58E AMS 58G AMS 81T LC QA315.U7313 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000729599707536 |
Urakawa, Hajime | ||
Providence, R. I. : American Mathematical Society, c1993 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|