top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang
Autore Lin Fanghua
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (280 p.)
Disciplina 514/.74
Altri autori (Persone) WangChangyou <1967->
Soggetto topico Harmonic maps
Heat equation
Riemannian manifolds
Soggetto genere / forma Electronic books.
ISBN 1-281-93808-4
9786611938086
981-277-953-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation
5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three
7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index
Record Nr. UNINA-9910454064403321
Lin Fanghua  
Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang
Autore Lin Fanghua
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (280 p.)
Disciplina 514/.74
Altri autori (Persone) WangChangyou <1967->
Soggetto topico Harmonic maps
Heat equation
Riemannian manifolds
ISBN 1-281-93808-4
9786611938086
981-277-953-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation
5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three
7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index
Record Nr. UNINA-9910782558103321
Lin Fanghua  
Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (344 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
Soggetto genere / forma Electronic books.
ISBN 1-4704-0473-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories""
""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings""
""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections""
Record Nr. UNINA-9910480401303321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (262 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
Soggetto genere / forma Electronic books.
ISBN 1-4704-0474-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment""
""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms""
""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface""
""24.1. Around smooth points of divisors""
Record Nr. UNINA-9910480643203321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (262 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
ISBN 1-4704-0474-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment""
""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms""
""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface""
""24.1. Around smooth points of divisors""
Record Nr. UNINA-9910788743303321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (344 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
ISBN 1-4704-0473-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories""
""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings""
""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections""
Record Nr. UNINA-9910788743603321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (262 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
ISBN 1-4704-0474-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration""
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment""
""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms""
""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface""
""24.1. Around smooth points of divisors""
Record Nr. UNINA-9910819099103321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules . Part 1 / / Takuro Mochizuki
Autore Mochizuki Takuro <1972->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2007]
Descrizione fisica 1 online resource (344 p.)
Disciplina 514.74
Collana Memoirs of the American Mathematical Society
Soggetto topico Hodge theory
D-modules
Vector bundles
Harmonic maps
ISBN 1-4704-0473-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgement""; ""Chapter 1. Introduction""; ""1.1. Simpson's Meta-Theorem""; ""1.2. The purposes in this paper""; ""1.3. On the purpose (1)""; ""1.4. On the purpose (2)""; ""1.5. Some Remark""; ""1.6. The outline of the paper""; ""Part 1. Preliminary""; ""Chapter 2. Preliminary""; ""2.1. Notation""; ""2.2. Prolongation by an increasing order""; ""2.3. Preliminary for Î?c-equivariant bundle""; ""2.4. Some elementary preliminary for convexity""; ""2.5. Some lemmas for functions on a disc""; ""2.6. An elementary remark on some distributions""
""2.7. Preliminary from elementary linear algebra""""2.8. Preliminary from complex differential geometry""; ""2.9. Preliminary from functional analysis""; ""2.10. An estimate of the norms of Higgs field and the conjugate""; ""2.11. Convergency of the sequence of harmonic bundles""; ""2.12. Higgs field and twisted map""; ""Chapter 3. Preliminary for Mixed Twistor Structure""; ""3.1. P[sup(1)]-holomorphic vector bundle over X x P[sup(1)]""; ""3.2. Equivariant P[sup(1)]-holomorphic bundle over X x P[sup(1)]""; ""3.3. Tate objects and O(p,q)""; ""3.4. Equivalence of some categories""
""3.5. Variation of P[sup(1)]-holomorphic bundles""""3.6. The twistor nilpotent orbit""; ""3.7. Split polarized mixed twistor structure and the nilpotent orbit""; ""3.8. The induced tuple on the divisor""; ""3.9. Translation of some results due to Kashiwara, Kawai and Saito""; ""3.10. R-triple in dimension 0 and twistor structure""; ""Chapter 4. Preliminary for Filtrations""; ""4.1. Filtrations and decompositions on a vector space""; ""4.2. Filtrations and decompositions on a vector bundle""; ""4.3. Compatibility of the filtrations and nilpotent maps""; ""4.4. Extension of splittings""
""4.5. Compatibility of the filtrations and nilpotent maps on the divisors""""Chapter 5. Some Lemmas for Generically Splitted Case""; ""5.1. Filtrations""; ""5.2. Compatibility of morphisms and filtrations""; ""Chapter 6. Model Bundles""; ""6.1. Basic example I""; ""6.2. Basic example II""; ""Part 2. Prolongation of Deformed Holomorphic Bundles""; ""Chapter 7. Harmonic Bundles on a Punctured Disc""; ""7.1. Simpson's main estimate""; ""7.2. The KMS-structure of tame harmonic bundles on a punctured disc""; ""7.3. Basic comparison due to Simpson""; ""7.4. Multi-valued flat sections""
Record Nr. UNINA-9910812437703321
Mochizuki Takuro <1972->  
Providence, Rhode Island : , : American Mathematical Society, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calculus of variations and harmonic maps / Hajime Urakawa ; translated by Hajime Urakawa
Calculus of variations and harmonic maps / Hajime Urakawa ; translated by Hajime Urakawa
Autore Urakawa, Hajime
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c1993
Descrizione fisica xiii, 251 p. : ill. ; 26 cm
Disciplina 515.64
Collana Translations of mathematical monographs, 0065-9282 ; 132
Soggetto topico Calculus of variations
Harmonic maps
ISBN 0821845810
Classificazione AMS 53C
AMS 58B
AMS 58D
AMS 58E
AMS 58G
AMS 81T
LC QA315.U7313
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000729599707536
Urakawa, Hajime  
Providence, R. I. : American Mathematical Society, c1993
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Compact Riemann surfaces : an introduction to contemporary Mathematics / Jürgen Jost ; translated by R. R. Simha
Compact Riemann surfaces : an introduction to contemporary Mathematics / Jürgen Jost ; translated by R. R. Simha
Autore Simha, R. R.
Pubbl/distr/stampa Berlin : Springer-Verlag, c1997
Descrizione fisica xiv, 292 p. : ill. ; 24 cm
Disciplina 515.93
Altri autori (Persone) Jost, Jürgenauthor
Collana Universitext
Soggetto topico Compact riemann surfaces
Conformal metrics
Harmonic maps
Teichmüller theory
ISBN 3540533346
Classificazione AMS 30F10
AMS 30F45
AMS 30F60
AMS 58E20
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000762499707536
Simha, R. R.  
Berlin : Springer-Verlag, c1997
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui