top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNISA-996426331403316
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910453700903321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in GPU research and practice / / edited by Hamid Sarbazi-Azad
Advances in GPU research and practice / / edited by Hamid Sarbazi-Azad
Autore Sarbazi-Azad Hamid
Edizione [First edition.]
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2017]
Descrizione fisica 1 online resource (776 pages) : illustrations (some color)
Collana Emerging trends in computer science and applied computing
Soggetto topico Graphics processing units - Programming
Imaging systems
Computer graphics
Image processing - Digital techniques
ISBN 0-12-803788-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583334103321
Sarbazi-Azad Hamid  
Amsterdam : , : Elsevier, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Designing scientific applications on GPUs / / edited by Raphael Couturier, University of Franche-Comte, Belfort, France
Designing scientific applications on GPUs / / edited by Raphael Couturier, University of Franche-Comte, Belfort, France
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (496 p.)
Disciplina 006.6/63
Collana Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Chapman & Hall/CRC numerical analysis and scientific computing
Soggetto topico Parallel programming (Computer science)
Graphics processing units - Programming
Science - Data processing
Numerical analysis - Computer programs
Application software - Development
ISBN 0-429-10085-X
1-4665-7162-4
Classificazione MAT021000COM000000COM059000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; I. Presentation of GPUs; 1. Presentation of the GPU architecture and of the CUDA environment; 2. Introduction to CUDA; II. Image processing; 3. Setting up the environment; 4. Implementing a fast median filter; 5. Implementing an efficient convolution operation on GPU; III. Software development; 6. Development of software components for heterogeneous many-core architectures; 7. Development methodologies for GPU and cluster of GPUs; IV. Optimization; 8. GPU-accelerated tree-based exact optimization methods
9. Parallel GPU-accelerated metaheuristics10. Linear programming on a GPU: a case study; V. Numerical applications; 11. Fast hydrodynamics on heterogeneous many-core hardware; 12. Parallel monotone spline interpolation and approximation on GPUs; 13. Solving sparse linear systems with GMRES and CG methods on GPU clusters; 14. Solving sparse nonlinear systems of obstacle problems on GPU clusters; 15. Ludwig: multiple GPUs for a complex fluid lattice Boltzmann application; 16. Numerical validation and performance optimization on GPUs of an application in atomic physics
17. A GPU-accelerated envelope-following method for switching power converter simulationVI. Other; 18. Implementing multi-agent systems on GPU; 19. Pseudorandom number generator on GPU; 20. Solving large sparse linear systems for integer factorization on GPUs
Record Nr. UNINA-9910787572903321
Boca Raton, FL : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Designing scientific applications on GPUs / / edited by Raphael Couturier, University of Franche-Comte, Belfort, France
Designing scientific applications on GPUs / / edited by Raphael Couturier, University of Franche-Comte, Belfort, France
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (496 p.)
Disciplina 006.6/63
Collana Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Chapman & Hall/CRC numerical analysis and scientific computing
Soggetto topico Parallel programming (Computer science)
Graphics processing units - Programming
Science - Data processing
Numerical analysis - Computer programs
Application software - Development
ISBN 1-04-005832-9
0-429-10085-X
1-4665-7162-4
Classificazione MAT021000COM000000COM059000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; I. Presentation of GPUs; 1. Presentation of the GPU architecture and of the CUDA environment; 2. Introduction to CUDA; II. Image processing; 3. Setting up the environment; 4. Implementing a fast median filter; 5. Implementing an efficient convolution operation on GPU; III. Software development; 6. Development of software components for heterogeneous many-core architectures; 7. Development methodologies for GPU and cluster of GPUs; IV. Optimization; 8. GPU-accelerated tree-based exact optimization methods
9. Parallel GPU-accelerated metaheuristics10. Linear programming on a GPU: a case study; V. Numerical applications; 11. Fast hydrodynamics on heterogeneous many-core hardware; 12. Parallel monotone spline interpolation and approximation on GPUs; 13. Solving sparse linear systems with GMRES and CG methods on GPU clusters; 14. Solving sparse nonlinear systems of obstacle problems on GPU clusters; 15. Ludwig: multiple GPUs for a complex fluid lattice Boltzmann application; 16. Numerical validation and performance optimization on GPUs of an application in atomic physics
17. A GPU-accelerated envelope-following method for switching power converter simulationVI. Other; 18. Implementing multi-agent systems on GPU; 19. Pseudorandom number generator on GPU; 20. Solving large sparse linear systems for integer factorization on GPUs
Altri titoli varianti Designing scientific applications on graphics processing units
Record Nr. UNINA-9910962135803321
Boca Raton, FL : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic structure calculations on graphics processing units : from quantum chemistry to condensed matter physics / / Ross C. Walker and Andreas W. Goetz, editors
Electronic structure calculations on graphics processing units : from quantum chemistry to condensed matter physics / / Ross C. Walker and Andreas W. Goetz, editors
Pubbl/distr/stampa West Sussex, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.39/96
Soggetto topico Electronic structure - Computer simulation
Electronic structure - Mathematical models
Graphics processing units - Programming
Mathematical physics
ISBN 1-118-67070-1
1-118-67071-X
1-118-67069-8
Classificazione SCI013050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright; Table of Contents; List of Contributors; Preface; Acknowledgments; Glossary; Abbreviations - Scientific; Abbreviations - Technical; Chapter 1: Why Graphics Processing Units; 1.1 A Historical Perspective of Parallel Computing; 1.2 The Rise of the GPU; 1.3 Parallel Computing on Central Processing Units; 1.4 Parallel Computing on Graphics Processing Units; 1.5 GPU-Accelerated Applications; References; Chapter 2: GPUs: Hardware to Software; 2.1 Basic GPU Terminology; 2.2 Architecture of GPUs; 2.3 CUDA Programming Model; 2.4 Programming and Optimization Concepts
2.5 Software Libraries for GPUs2.6 Special Features of CUDA-Enabled GPUs; References; Chapter 3: Overview of Electronic Structure Methods; 3.1 Introduction; 3.2 Hartree-Fock Theory; 3.3 Density Functional Theory; 3.4 Basis Sets; 3.5 Semiempirical Methods; 3.6 Density Functional Tight Binding; 3.7 Wave Function-Based Electron Correlation Methods; Acknowledgments; References; Chapter 4: Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs; 4.1 Quantum Chemistry Review; 4.2 Hardware and CUDA Overview; 4.3 GPU ERI Evaluation; 4.4 Integral-Direct Fock Construction on GPUs
4.5 Precision Considerations4.6 Post-SCF Methods; 4.7 Example Calculations; 4.8 Conclusions and Outlook; References; Chapter 5: GPU Acceleration for Density Functional Theory with Slater-Type Orbitals; 5.1 Background; 5.2 Theory and CPU Implementation; 5.3 GPU Implementation; 5.4 Conclusion; References; Chapter 6: Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures; 6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional Theory Implementations; 6.2 Operators in Wavelet Basis Sets; 6.3 Parallelization; 6.4 GPU Architecture
6.5 Conclusions and OutlookReferences; Chapter 7: Plane-Wave Density Functional Theory; 7.1 Introduction; 7.2 Theoretical Background; 7.3 Implementation; 7.4 Optimizations; 7.5 Performance Examples; 7.6 Exact Exchange with Plane Waves; 7.7 Summary and Outlook; 7.8 Acknowledgments; References; Appendix A: Definitions and Conventions; Appendix B: Example Kernels; Chapter 8: GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory; 8.1 Introduction; 8.2 Software Architecture for GPU-Acceleration; 8.3 Maximizing Asynchronous Progress
8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications8.5 Benchmarks and Conclusions; Acknowledgments; References; Chapter 9: Grid-Based Projector-Augmented Wave Method; 9.1 Introduction; 9.2 General Overview; 9.3 Using GPUs in Ground-State Calculations; 9.4 Time-Dependent Density Functional Theory; 9.5 Random Phase Approximation for the Correlation Energy; 9.6 Summary and Outlook; Acknowledgments; References; Chapter 10: Application of Graphics Processing Units to Accelerate Real-Space Density Functional Theory and Time-Dependent Density Functional Theory Calculations; 10.1 Introduction
10.2 The Real-Space Representation
Record Nr. UNINA-9910136420103321
West Sussex, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic structure calculations on graphics processing units : from quantum chemistry to condensed matter physics / / Ross C. Walker and Andreas W. Goetz, editors
Electronic structure calculations on graphics processing units : from quantum chemistry to condensed matter physics / / Ross C. Walker and Andreas W. Goetz, editors
Pubbl/distr/stampa West Sussex, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (448 p.)
Disciplina 621.39/96
Soggetto topico Electronic structure - Computer simulation
Electronic structure - Mathematical models
Graphics processing units - Programming
Mathematical physics
ISBN 1-118-67070-1
1-118-67071-X
1-118-67069-8
Classificazione SCI013050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright; Table of Contents; List of Contributors; Preface; Acknowledgments; Glossary; Abbreviations - Scientific; Abbreviations - Technical; Chapter 1: Why Graphics Processing Units; 1.1 A Historical Perspective of Parallel Computing; 1.2 The Rise of the GPU; 1.3 Parallel Computing on Central Processing Units; 1.4 Parallel Computing on Graphics Processing Units; 1.5 GPU-Accelerated Applications; References; Chapter 2: GPUs: Hardware to Software; 2.1 Basic GPU Terminology; 2.2 Architecture of GPUs; 2.3 CUDA Programming Model; 2.4 Programming and Optimization Concepts
2.5 Software Libraries for GPUs2.6 Special Features of CUDA-Enabled GPUs; References; Chapter 3: Overview of Electronic Structure Methods; 3.1 Introduction; 3.2 Hartree-Fock Theory; 3.3 Density Functional Theory; 3.4 Basis Sets; 3.5 Semiempirical Methods; 3.6 Density Functional Tight Binding; 3.7 Wave Function-Based Electron Correlation Methods; Acknowledgments; References; Chapter 4: Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs; 4.1 Quantum Chemistry Review; 4.2 Hardware and CUDA Overview; 4.3 GPU ERI Evaluation; 4.4 Integral-Direct Fock Construction on GPUs
4.5 Precision Considerations4.6 Post-SCF Methods; 4.7 Example Calculations; 4.8 Conclusions and Outlook; References; Chapter 5: GPU Acceleration for Density Functional Theory with Slater-Type Orbitals; 5.1 Background; 5.2 Theory and CPU Implementation; 5.3 GPU Implementation; 5.4 Conclusion; References; Chapter 6: Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures; 6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional Theory Implementations; 6.2 Operators in Wavelet Basis Sets; 6.3 Parallelization; 6.4 GPU Architecture
6.5 Conclusions and OutlookReferences; Chapter 7: Plane-Wave Density Functional Theory; 7.1 Introduction; 7.2 Theoretical Background; 7.3 Implementation; 7.4 Optimizations; 7.5 Performance Examples; 7.6 Exact Exchange with Plane Waves; 7.7 Summary and Outlook; 7.8 Acknowledgments; References; Appendix A: Definitions and Conventions; Appendix B: Example Kernels; Chapter 8: GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory; 8.1 Introduction; 8.2 Software Architecture for GPU-Acceleration; 8.3 Maximizing Asynchronous Progress
8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications8.5 Benchmarks and Conclusions; Acknowledgments; References; Chapter 9: Grid-Based Projector-Augmented Wave Method; 9.1 Introduction; 9.2 General Overview; 9.3 Using GPUs in Ground-State Calculations; 9.4 Time-Dependent Density Functional Theory; 9.5 Random Phase Approximation for the Correlation Energy; 9.6 Summary and Outlook; Acknowledgments; References; Chapter 10: Application of Graphics Processing Units to Accelerate Real-Space Density Functional Theory and Time-Dependent Density Functional Theory Calculations; 10.1 Introduction
10.2 The Real-Space Representation
Record Nr. UNINA-9910816354503321
West Sussex, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
GPU computing gems [[electronic resource] /] / editor, Wen-mei W. Hwu
GPU computing gems [[electronic resource] /] / editor, Wen-mei W. Hwu
Edizione [Emerald ed.]
Pubbl/distr/stampa Burlington, Mass., : Elsevier, c2011
Descrizione fisica 1 online resource (889 p.)
Disciplina 006.6
Altri autori (Persone) HwuWen-mei
Collana Morgan Kaufmann's applications of GPU computing series
Soggetto topico Graphics processing units - Programming
Imaging systems
Computer graphics
Image processing - Digital techniques
Soggetto genere / forma Electronic books.
ISBN 1-282-97672-9
9786612976728
0-12-384989-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto section 1. Scientific simulation -- section 2. Life sciences -- section 3. Statistical modeling -- section 4. Emerging data-intensive applications -- section 5. Electric design automation -- section 6. Ray tracing and rendering -- section 7. Computer vision -- section 8. Video and image processing -- section 9. Signal and audio processing -- section 10. Medical imaging.
Record Nr. UNINA-9910458197903321
Burlington, Mass., : Elsevier, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
GPU computing gems [[electronic resource] /] / editor, Wen-mei W. Hwu
GPU computing gems [[electronic resource] /] / editor, Wen-mei W. Hwu
Edizione [Emerald ed.]
Pubbl/distr/stampa Burlington, Mass., : Elsevier, c2011
Descrizione fisica 1 online resource (889 p.)
Disciplina 006.6
Altri autori (Persone) HwuWen-mei
Collana Morgan Kaufmann's applications of GPU computing series
Soggetto topico Graphics processing units - Programming
Imaging systems
Computer graphics
Image processing - Digital techniques
ISBN 1-282-97672-9
9786612976728
0-12-384989-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto section 1. Scientific simulation -- section 2. Life sciences -- section 3. Statistical modeling -- section 4. Emerging data-intensive applications -- section 5. Electric design automation -- section 6. Ray tracing and rendering -- section 7. Computer vision -- section 8. Video and image processing -- section 9. Signal and audio processing -- section 10. Medical imaging.
Record Nr. UNINA-9910791461403321
Burlington, Mass., : Elsevier, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphics Processing Unit (GPU) performance on an N-Body problem / / by Pat Collins
Graphics Processing Unit (GPU) performance on an N-Body problem / / by Pat Collins
Autore Collins Pat
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : Army Research Laboratory, , 2009
Descrizione fisica 1 online resource (16 pages) : color illustrations
Soggetto topico Graphics processing units - Programming
Many-body problem
CUDA (Computer architecture)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Graphics Processing Unit
Record Nr. UNINA-9910701446203321
Collins Pat  
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui