top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Brownian Regularity for the Airy Line Ensemble, and Multi-Polymer Watermelons in Brownian Last Passage Percolation
Brownian Regularity for the Airy Line Ensemble, and Multi-Polymer Watermelons in Brownian Last Passage Percolation
Autore Hammond Alan
Edizione [1st ed.]
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 2022
Descrizione fisica 1 online resource (146 pages)
Disciplina 530.13
Collana Memoirs of the American Mathematical Society
Soggetto topico Brownian motion processes
Gibbs' equation
Airy functions
Set theory
Percolation (Statistical physics)
Geodesics (Mathematics)
Stochastic partial differential equations
Statistical mechanics, structure of matter -- Time-dependent statistical mechanics (dynamic and nonequilibrium) -- Interacting particle systems
Statistical mechanics, structure of matter -- Equilibrium statistical mechanics -- Exactly solvable models; Bethe ansatz
Probability theory and stochastic processes -- Stochastic analysis -- Stochastic partial differential equations
ISBN 9781470470951
1470470950
Classificazione 82C2282B2360H15
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title page -- Chapter 1. Introduction -- 1.1. Kardar-Parisi-Zhang universality -- 1.2. A conceptual overview of the scaled Brownian last passage percolation study -- 1.3. Non-intersecting line ensembles and their integrable and probabilistic analysis -- 1.4. The article's main results -- Chapter 2. Brownian Gibbs ensembles: Definition and statements -- 2.1. Preliminaries: Bridge ensembles and the Brownian Gibbs property -- 2.2. Statements of principal results concerning regular ensembles -- 2.3. Some generalities: Notation and basic properties of Brownian Gibbs ensembles -- Chapter 3. Missing closed middle reconstruction and the Wiener candidate -- 3.1. Close encounter between finitely many non-intersecting Brownian bridges -- 3.2. The reconstruction of the missing closed middle -- 3.3. Applications of the Wiener candidate approach -- Chapter 4. The jump ensemble method: Foundations -- 4.1. The jump ensemble method -- 4.2. General tools for the jump ensemble method -- Chapter 5. The jump ensemble method: Applications -- 5.1. Upper bound on the probability of curve closeness over a given point -- 5.2. Closeness of curves at a general location -- 5.3. Brownian bridge regularity of regular ensembles -- Appendix A. Properties of regular Brownian Gibbs ensembles -- A.1. Scaled Brownian LPP line ensembles are regular -- A.2. The lower tail of the lower curves -- A.3. Regular ensemble curves collapse near infinity -- Bibliography -- Back Cover.
Record Nr. UNINA-9910966329903321
Hammond Alan  
Providence : , : American Mathematical Society, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distance expanding random mappings, thermodynamical formalism, Gibbs measures and fractal geometry / / Volker Mayer, Bartlomiej Skorulski, Mariusz Urbanski
Distance expanding random mappings, thermodynamical formalism, Gibbs measures and fractal geometry / / Volker Mayer, Bartlomiej Skorulski, Mariusz Urbanski
Autore Mayer Volker
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, : Springer, 2011
Descrizione fisica 1 online resource (X, 112 p. 3 illus. in color.)
Disciplina 515.39
515.48
Altri autori (Persone) SkorulskiBartlomiej
UrbanskiMariusz
Collana Lecture notes in mathematics
Soggetto topico Functions, Meromorphic
Gibbs' equation
Fractals
Expanding universe
ISBN 9783642236501
3642236502
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Expanding Random Maps -- 3 The RPF–theorem -- 4 Measurability, Pressure and Gibbs Condition -- 5 Fractal Structure of Conformal Expanding Random Repellers -- 6 Multifractal Analysis -- 7 Expanding in the Mean -- 8 Classical Expanding Random Systems -- 9 Real Analyticity of Pressure.
Record Nr. UNINA-9910130745103321
Mayer Volker  
Berlin, : Springer, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui