top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analytic and Probabilistic Approaches to Dynamics in Negative Curvature / / edited by Françoise Dal'Bo, Marc Peigné, Andrea Sambusetti
Analytic and Probabilistic Approaches to Dynamics in Negative Curvature / / edited by Françoise Dal'Bo, Marc Peigné, Andrea Sambusetti
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (148 p.)
Disciplina 514.74
Collana Springer INdAM Series
Soggetto topico Dynamics
Ergodic theory
Probabilities
Operator theory
Geometry, Hyperbolic
Geometry, Differential
Dynamical Systems and Ergodic Theory
Probability Theory and Stochastic Processes
Operator Theory
Hyperbolic Geometry
Differential Geometry
ISBN 3-319-04807-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Preface""; ""Acknowledgements""; ""Contents""; ""Chapter 1 Martingales in Hyperbolic Geometry""; ""1.1 Introduction""; ""1.2 Martingales and Central Limit Theorem in Dynamical Systems""; ""1.2.1 The De Moivre-Laplace Theorem""; ""1.2.2 Example 1: The Angle Doubling""; ""1.2.3 The Gordin's Method""; ""1.2.4 Example 2: The Cat Map""; ""1.3 Other Limit Theorems and Construction of Adequate Filtrations""; ""1.3.1 Some Other Limit Theorems""; ""1.3.1.1 The Donsker Invariance Principle""; ""1.3.1.2 The CLT for Vector Valued Functions""; ""1.3.1.3 The CLT Along Subsequences""
""1.3.2 Example 3: The Geodesic Flow on a Compact Surface with Curvature -1""""1.3.3 Example 4: The Ergodic Automorphisms of the Torus""; ""1.4 Martingales in Hyperbolic Geometry""; ""1.4.1 Example 5: The Geodesic Flow in Dimension d, Constant Curvature (Compact Case)""; ""1.4.2 Example 6: The Geodesic Flow on a Surface with Constant Curvature of Finite Volume""; ""1.4.3 Example 7: The Diagonal Flows on Compact Quotients of SL(d,R)""; ""1.4.4 Examples of Geometrical Applications""; ""1.5 Mixing and Equidistribution""; ""1.5.1 Mixing and Directional Regularity""
""1.5.2 Example 8: Composing Different Transformations""""1.6 Some General References""; ""References""; ""Chapter 2 Semiclassical Approach for the Ruelle-Pollicott Spectrum of Hyperbolic Dynamics""; ""2.1 Introduction""; ""2.1.1 The General Idea Behind the Semiclassical Approach""; ""2.2 Hyperbolic Dynamics""; ""2.2.1 Anosov Maps""; ""2.2.1.1 General Properties of Anosov Diffeomorphism""; ""2.2.2 Prequantum Anosov Maps""; ""2.2.3 Anosov Vector Field""; ""2.2.3.1 General Properties of Contact Anosov Flows""; ""2.3 Transfer Operators and Their Discrete Ruelle-Pollicott Spectrum""
""2.3.1 Ruelle Spectrum for a Basic Model of Expanding Map""""2.3.1.1 Transfer Operator""; ""2.3.1.2 Asymptotic Expansion""; ""2.3.1.3 Ruelle Spectrum""; ""2.3.1.4 Arguments of Proof of Theorem 2.4""; ""2.3.1.5 Ruelle Spectrum for Expanding Map in Rd""; ""2.3.2 Ruelle Spectrum of Anosov map""; ""2.3.2.1 Proof of Theorem 2.6""; ""2.3.2.2 The Atiyah-Bott Trace Formula""; ""2.3.3 Ruelle Band Spectrum for Prequantum Anosov Maps""; ""2.3.3.1 Proof of Theorem 2.7""; ""2.3.4 Ruelle Spectrum for Anosov Vector Fields""; ""2.3.4.1 Sketch of Proof of Theorem 2.9""
""2.3.5 Ruelle Band Spectrum for Contact Anosov Vector Fields""""2.3.5.1 Case of Geodesic Flow on Constant Curvature Surface""; ""2.3.5.2 General Case""; ""2.3.5.3 Consequence for Correlation Functions Expansion""; ""2.3.5.4 Proof of Theorem 2.10""; ""2.4 Trace Formula and Zeta Functions""; ""2.4.1 Gutzwiller Trace Formula for Anosov Prequantum Map""; ""2.4.1.1 The Question of Existence of a ``Natural Quantization''""; ""2.4.2 Gutzwiller Trace Formula for Contact Anosov Flows""; ""2.4.2.1 Zeta Function""; ""2.4.2.2 Application: Counting Periodic Orbits""
""2.4.2.3 Semiclassical Zeta Function""
Record Nr. UNINA-9910299990103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa New Jersey, : World Scientific, c2005
Descrizione fisica 1 online resource (482 p.)
Disciplina 516.9
Soggetto topico Geometry, Hyperbolic
Vector algebra
Soggetto genere / forma Electronic books.
ISBN 1-281-89922-4
9786611899226
981-270-327-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910450722803321
Ungar Abraham A  
New Jersey, : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa New Jersey, : World Scientific, c2005
Descrizione fisica 1 online resource (482 p.)
Disciplina 516.9
Soggetto topico Geometry, Hyperbolic
Vector algebra
ISBN 1-281-89922-4
9786611899226
981-270-327-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910784043903321
Ungar Abraham A  
New Jersey, : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910453536303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910782273303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Autore Ungar Abraham A.
Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , [2015]
Descrizione fisica 1 online resource (616 p.)
Disciplina 516.9
Collana A Science Publishers Book
Soggetto topico Geometry, Hyperbolic
ISBN 0-429-17474-8
1-4822-3668-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography
Record Nr. UNINA-9910787261603321
Ungar Abraham A.  
Boca Raton : , : Taylor & Francis, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Autore Ungar Abraham Albert
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2010
Descrizione fisica 1 online resource (300 p.)
Disciplina 516.2
516.22
Soggetto topico Geometry, Analytic
Calculus
Geometry, Plane
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-283-14453-0
9786613144539
981-4304-94-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910463939803321
Ungar Abraham Albert  
Hackensack, N.J., : World Scientific, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Autore Ungar Abraham Albert
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2010
Descrizione fisica 1 online resource (300 p.)
Disciplina 516.2
516.22
Soggetto topico Geometry, Analytic
Calculus
Geometry, Plane
Geometry, Hyperbolic
ISBN 1-283-14453-0
9786613144539
981-4304-94-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910788555903321
Ungar Abraham Albert  
Hackensack, N.J., : World Scientific, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar
Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar
Autore Ungar Abraham A.
Pubbl/distr/stampa London, England : , : Academic Press, , 2018
Descrizione fisica 1 online resource (420 pages) : illustrations
Disciplina 530.11
Collana Mathematical Analysis and its Applications
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 0-12-811774-5
0-12-811773-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Einstein gyrogroups -- 3. Einstein gyrovector spaces -- 4. Bi-gyrogroups and bi-gyrovector spaces - P -- 5. . Bi-gyrogroups and bi-gyrovector spaces - V -- 6. Applications to time-space of signature (m,n) -- 7. Analytic bi-hyperbolic geometry : the geometry of bi-gyrovector spaces.
Record Nr. UNINA-9910583474603321
Ungar Abraham A.  
London, England : , : Academic Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Autore Ungar Abraham A
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Descrizione fisica 1 online resource (462 p.)
Disciplina 530.11
Collana Fundamental theories of physics
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-280-20689-6
9786610206896
0-306-47134-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein’S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations — the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups.
Record Nr. UNINA-9910454579603321
Ungar Abraham A  
Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui