Analytic and Probabilistic Approaches to Dynamics in Negative Curvature / / edited by Françoise Dal'Bo, Marc Peigné, Andrea Sambusetti
| Analytic and Probabilistic Approaches to Dynamics in Negative Curvature / / edited by Françoise Dal'Bo, Marc Peigné, Andrea Sambusetti |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (148 p.) |
| Disciplina | 514.74 |
| Collana | Springer INdAM Series |
| Soggetto topico |
Dynamics
Ergodic theory Probabilities Operator theory Geometry, Hyperbolic Geometry, Differential Dynamical Systems and Ergodic Theory Probability Theory and Stochastic Processes Operator Theory Hyperbolic Geometry Differential Geometry |
| ISBN | 3-319-04807-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Preface""; ""Acknowledgements""; ""Contents""; ""Chapter 1 Martingales in Hyperbolic Geometry""; ""1.1 Introduction""; ""1.2 Martingales and Central Limit Theorem in Dynamical Systems""; ""1.2.1 The De Moivre-Laplace Theorem""; ""1.2.2 Example 1: The Angle Doubling""; ""1.2.3 The Gordin's Method""; ""1.2.4 Example 2: The Cat Map""; ""1.3 Other Limit Theorems and Construction of Adequate Filtrations""; ""1.3.1 Some Other Limit Theorems""; ""1.3.1.1 The Donsker Invariance Principle""; ""1.3.1.2 The CLT for Vector Valued Functions""; ""1.3.1.3 The CLT Along Subsequences""
""1.3.2 Example 3: The Geodesic Flow on a Compact Surface with Curvature -1""""1.3.3 Example 4: The Ergodic Automorphisms of the Torus""; ""1.4 Martingales in Hyperbolic Geometry""; ""1.4.1 Example 5: The Geodesic Flow in Dimension d, Constant Curvature (Compact Case)""; ""1.4.2 Example 6: The Geodesic Flow on a Surface with Constant Curvature of Finite Volume""; ""1.4.3 Example 7: The Diagonal Flows on Compact Quotients of SL(d,R)""; ""1.4.4 Examples of Geometrical Applications""; ""1.5 Mixing and Equidistribution""; ""1.5.1 Mixing and Directional Regularity"" ""1.5.2 Example 8: Composing Different Transformations""""1.6 Some General References""; ""References""; ""Chapter 2 Semiclassical Approach for the Ruelle-Pollicott Spectrum of Hyperbolic Dynamics""; ""2.1 Introduction""; ""2.1.1 The General Idea Behind the Semiclassical Approach""; ""2.2 Hyperbolic Dynamics""; ""2.2.1 Anosov Maps""; ""2.2.1.1 General Properties of Anosov Diffeomorphism""; ""2.2.2 Prequantum Anosov Maps""; ""2.2.3 Anosov Vector Field""; ""2.2.3.1 General Properties of Contact Anosov Flows""; ""2.3 Transfer Operators and Their Discrete Ruelle-Pollicott Spectrum"" ""2.3.1 Ruelle Spectrum for a Basic Model of Expanding Map""""2.3.1.1 Transfer Operator""; ""2.3.1.2 Asymptotic Expansion""; ""2.3.1.3 Ruelle Spectrum""; ""2.3.1.4 Arguments of Proof of Theorem 2.4""; ""2.3.1.5 Ruelle Spectrum for Expanding Map in Rd""; ""2.3.2 Ruelle Spectrum of Anosov map""; ""2.3.2.1 Proof of Theorem 2.6""; ""2.3.2.2 The Atiyah-Bott Trace Formula""; ""2.3.3 Ruelle Band Spectrum for Prequantum Anosov Maps""; ""2.3.3.1 Proof of Theorem 2.7""; ""2.3.4 Ruelle Spectrum for Anosov Vector Fields""; ""2.3.4.1 Sketch of Proof of Theorem 2.9"" ""2.3.5 Ruelle Band Spectrum for Contact Anosov Vector Fields""""2.3.5.1 Case of Geodesic Flow on Constant Curvature Surface""; ""2.3.5.2 General Case""; ""2.3.5.3 Consequence for Correlation Functions Expansion""; ""2.3.5.4 Proof of Theorem 2.10""; ""2.4 Trace Formula and Zeta Functions""; ""2.4.1 Gutzwiller Trace Formula for Anosov Prequantum Map""; ""2.4.1.1 The Question of Existence of a ``Natural Quantization''""; ""2.4.2 Gutzwiller Trace Formula for Contact Anosov Flows""; ""2.4.2.1 Zeta Function""; ""2.4.2.2 Application: Counting Periodic Orbits"" ""2.4.2.3 Semiclassical Zeta Function"" |
| Record Nr. | UNINA-9910299990103321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
| Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar |
| Autore | Ungar Abraham A |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2005 |
| Descrizione fisica | 1 online resource (482 p.) |
| Disciplina | 516.9 |
| Soggetto topico |
Geometry, Hyperbolic
Vector algebra |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-89922-4
9786611899226 981-270-327-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index |
| Record Nr. | UNINA-9910450722803321 |
Ungar Abraham A
|
||
| New Jersey, : World Scientific, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
| Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar |
| Autore | Ungar Abraham A |
| Pubbl/distr/stampa | New Jersey, : World Scientific, c2005 |
| Descrizione fisica | 1 online resource (482 p.) |
| Disciplina | 516.9 |
| Soggetto topico |
Geometry, Hyperbolic
Vector algebra |
| ISBN |
1-281-89922-4
9786611899226 981-270-327-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index |
| Record Nr. | UNINA-9910784043903321 |
Ungar Abraham A
|
||
| New Jersey, : World Scientific, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
| Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar |
| Autore | Ungar Abraham A |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (649 p.) |
| Disciplina | 516.9 |
| Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-91199-2
9786611911997 981-277-230-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms 4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition 5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law 6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces 7.4 The Cogyroline Element of M obius Gyrovector Spaces |
| Record Nr. | UNINA-9910453536303321 |
Ungar Abraham A
|
||
| Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
| Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar |
| Autore | Ungar Abraham A |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (649 p.) |
| Disciplina | 516.9 |
| Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
| ISBN |
1-281-91199-2
9786611911997 981-277-230-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms 4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition 5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law 6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces 7.4 The Cogyroline Element of M obius Gyrovector Spaces |
| Record Nr. | UNINA-9910782273303321 |
Ungar Abraham A
|
||
| Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
| Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA |
| Autore | Ungar Abraham A. |
| Pubbl/distr/stampa | Boca Raton : , : Taylor & Francis, , [2015] |
| Descrizione fisica | 1 online resource (616 p.) |
| Disciplina | 516.9 |
| Collana | A Science Publishers Book |
| Soggetto topico | Geometry, Hyperbolic |
| ISBN |
0-429-17474-8
1-4822-3668-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography |
| Record Nr. | UNINA-9910787261603321 |
Ungar Abraham A.
|
||
| Boca Raton : , : Taylor & Francis, , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
| Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar |
| Autore | Ungar Abraham Albert |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2010 |
| Descrizione fisica | 1 online resource (300 p.) |
| Disciplina |
516.2
516.22 |
| Soggetto topico |
Geometry, Analytic
Calculus Geometry, Plane Geometry, Hyperbolic |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-14453-0
9786613144539 981-4304-94-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index |
| Record Nr. | UNINA-9910463939803321 |
Ungar Abraham Albert
|
||
| Hackensack, N.J., : World Scientific, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
| Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar |
| Autore | Ungar Abraham Albert |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2010 |
| Descrizione fisica | 1 online resource (300 p.) |
| Disciplina |
516.2
516.22 |
| Soggetto topico |
Geometry, Analytic
Calculus Geometry, Plane Geometry, Hyperbolic |
| ISBN |
1-283-14453-0
9786613144539 981-4304-94-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index |
| Record Nr. | UNINA-9910788555903321 |
Ungar Abraham Albert
|
||
| Hackensack, N.J., : World Scientific, 2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar
| Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar |
| Autore | Ungar Abraham A. |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
| Descrizione fisica | 1 online resource (420 pages) : illustrations |
| Disciplina | 530.11 |
| Collana | Mathematical Analysis and its Applications |
| Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
| ISBN |
0-12-811774-5
0-12-811773-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. Einstein gyrogroups -- 3. Einstein gyrovector spaces -- 4. Bi-gyrogroups and bi-gyrovector spaces - P -- 5. . Bi-gyrogroups and bi-gyrovector spaces - V -- 6. Applications to time-space of signature (m,n) -- 7. Analytic bi-hyperbolic geometry : the geometry of bi-gyrovector spaces. |
| Record Nr. | UNINA-9910583474603321 |
Ungar Abraham A.
|
||
| London, England : , : Academic Press, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
| Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar |
| Autore | Ungar Abraham A |
| Edizione | [1st ed. 2002.] |
| Pubbl/distr/stampa | Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001 |
| Descrizione fisica | 1 online resource (462 p.) |
| Disciplina | 530.11 |
| Collana | Fundamental theories of physics |
| Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-20689-6
9786610206896 0-306-47134-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein’S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations — the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups. |
| Record Nr. | UNINA-9910454579603321 |
Ungar Abraham A
|
||
| Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||