top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa New Jersey, : World Scientific, c2005
Descrizione fisica 1 online resource (482 p.)
Disciplina 516.9
Soggetto topico Geometry, Hyperbolic
Vector algebra
Soggetto genere / forma Electronic books.
ISBN 1-281-89922-4
9786611899226
981-270-327-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910450722803321
Ungar Abraham A  
New Jersey, : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa New Jersey, : World Scientific, c2005
Descrizione fisica 1 online resource (482 p.)
Disciplina 516.9
Soggetto topico Geometry, Hyperbolic
Vector algebra
ISBN 1-281-89922-4
9786611899226
981-270-327-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910784043903321
Ungar Abraham A  
New Jersey, : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry : mathematical foundations and applications / / Abraham A. Ungar
Analytic hyperbolic geometry : mathematical foundations and applications / / Abraham A. Ungar
Autore Ungar Abraham A
Edizione [1st ed.]
Pubbl/distr/stampa New Jersey, : World Scientific, c2005
Descrizione fisica 1 online resource (482 p.)
Disciplina 516.9
Soggetto topico Geometry, Hyperbolic
Vector algebra
ISBN 1-281-89922-4
9786611899226
981-270-327-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910815304303321
Ungar Abraham A  
New Jersey, : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910453536303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910782273303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity / / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity / / Abraham Albert Ungar
Autore Ungar Abraham A
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910825818303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Autore Ungar Abraham A.
Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , [2015]
Descrizione fisica 1 online resource (616 p.)
Disciplina 516.9
Collana A Science Publishers Book
Soggetto topico Geometry, Hyperbolic
ISBN 0-429-17474-8
1-4822-3668-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography
Record Nr. UNINA-9910787261603321
Ungar Abraham A.  
Boca Raton : , : Taylor & Francis, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA
Autore Ungar Abraham A.
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , [2015]
Descrizione fisica 1 online resource (616 p.)
Disciplina 516.9
Collana A Science Publishers Book
Soggetto topico Geometry, Hyperbolic
ISBN 0-429-17474-8
1-4822-3668-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography
Record Nr. UNINA-9910820575903321
Ungar Abraham A.  
Boca Raton : , : Taylor & Francis, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Autore Ungar Abraham Albert
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2010
Descrizione fisica 1 online resource (300 p.)
Disciplina 516.2
516.22
Soggetto topico Geometry, Analytic
Calculus
Geometry, Plane
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-283-14453-0
9786613144539
981-4304-94-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910463939803321
Ungar Abraham Albert  
Hackensack, N.J., : World Scientific, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Barycentric calculus in Euclidian and hyperbolic geometry [[electronic resource] ] : a comparative introduction / / Abraham Albert Ungar
Autore Ungar Abraham Albert
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2010
Descrizione fisica 1 online resource (300 p.)
Disciplina 516.2
516.22
Soggetto topico Geometry, Analytic
Calculus
Geometry, Plane
Geometry, Hyperbolic
ISBN 1-283-14453-0
9786613144539
981-4304-94-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Euclidean Barycentric Coordinates and the Classic Triangle Centers; 2. Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry; 3. The Interplay of Einstein Addition and Vector Addition; 4. Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers; 5. Hyperbolic Incircles and Excircles; 6. Hyperbolic Tetrahedra; 7. Comparative Patterns; Notation And Special Symbols; Bibliography; Index
Record Nr. UNINA-9910788555903321
Ungar Abraham Albert  
Hackensack, N.J., : World Scientific, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui