top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
Autore Paoluzzi Alberto
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2003
Descrizione fisica 1 online resource (945 pages) : illustrations
Disciplina 620.00420285
Soggetto topico Geometric programming
Computer-aided design
Soggetto genere / forma Electronic books.
ISBN 1-119-50912-2
9786610554102
0-470-01388-5
1-280-55410-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910143230703321
Paoluzzi Alberto  
Chichester, West Sussex, England : , : Wiley, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
Autore Paoluzzi Alberto
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2003
Descrizione fisica 1 online resource (945 pages) : illustrations
Disciplina 620.00420285
Soggetto topico Geometric programming
Computer-aided design
ISBN 1-119-50912-2
9786610554102
0-470-01388-5
1-280-55410-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830961103321
Paoluzzi Alberto  
Chichester, West Sussex, England : , : Wiley, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric programming for design equation development and cost/profit optimization : (with illustrative case study problems and solutions) / / Robert C. Creese
Geometric programming for design equation development and cost/profit optimization : (with illustrative case study problems and solutions) / / Robert C. Creese
Autore Creese Robert C. <1941-, >
Edizione [Third edition.]
Pubbl/distr/stampa [San Rafael, California] : , : Morgan & Claypool, , 2017
Descrizione fisica 1 online resource (212 pages) : illustrations, tables
Disciplina 516
Collana Synthesis lectures on engineering
Soggetto topico Geometric programming
Soggetto non controllato design optimization
generalized design relationships
cost optimization
profit maximization
cost ratios
constrained derivative
dimensional analysis
condensation of terms
transformed dual
posynominials
ISBN 1-62705-936-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Introduction, history, and theoretical fundamentals of geometric programming -- 1. Introduction -- 1.1 Optimization and geometric programming -- 1.1.1 Optimization -- 1.1.2 Geometric programming -- 1.2 Evaluative questions -- 1.3 References -- 2.Brief history of geometric programming -- 2.1 Pioneers of geometric programming -- 2.2 Evaluative questions -- 2.3 References -- 3. Theoretical fundamentals -- 3.1 Primal and dual formulations -- 3.2 Evaluative questions -- 3.3 References --
Part II. Geometric programming cost minimization applications with zero degrees of difficulty -- 4. The optimal box design case study -- 4.1 Introduction -- 4.2 The optimal box design problem -- 4.3 Evaluative questions -- 5. Trash can case study -- 5.1 Introduction -- 5.2 The optimal trash can design problem -- 5.3 Evaluative questions -- 5.4 References -- 6. The building area design case study -- 6.1 Introduction -- 6.2 The building area design problem -- 6.3 Problem solution -- 6.4 Modified building area design problem -- 6.5 Fixed room height area design problem -- 6.6 Evaluative questions -- 6.7 References -- 7. The open cargo shipping box case study -- 7.1 Problem statement and general solution -- 7.2 Evaluative questions -- 7.3 References -- 8. Metal casting cylindrical side riser case study -- 8.1 Introduction -- 8.2 Problem formulation and general solution -- 8.3 Cylindrical side riser example -- 8.4 Evaluative questions -- 8.5 References -- 9. Inventory model case study -- 9.1 Problem statement and general solution -- 9.2 Inventory example problem -- 9.3 Evaluative questions -- 9.4 References -- 10. Process furnace design case study -- 10.1 Problem statement and solution -- 10.2 Conclusions -- 10.3 Evaluative questions -- 10.4 References -- 11. The gas transmission pipeline case study -- 11.1 Problem statement and solution -- 11.2 Evaluative questions -- 11.3 References -- 12. Material removal/metal cutting economics case study -- 12.1 Introduction -- 12.2 Problem formulation -- 12.3 Evaluative questions -- 12.4 References -- 13. Construction building sector cost minimization case study -- 13.1 Introduction -- 13.2 Model development -- 13.3 Model results and validation -- 13.4 Conclusions -- 13.5 Evaluative questions -- 13.6 References --
Part III. Geometric programming profit maximization applications with zero degrees of difficulty -- 14. Production function profit maximization case study -- 14.1 Profit maximization with geometric programming -- 14.2 Profit maximization of the production function case study -- 14.3 Evaluative questions -- 14.4 References -- 15. Product mix profit maximization case study -- 15.1 Profit maximization using the Cobb-Douglas production function -- 15.2 Evaluative questions -- 15.3 References -- 16. Chemical plant product profitability case study -- 16.1 Model formulation -- 16.2 Primal and dual solutions -- 16.3 Evaluative questions -- 16.4 References --
Part IV. Geometric programming applications with positive degrees of difficulty -- 17. Journal bearing design case study -- 17.1 Issues with positive degrees of difficulty problems -- 17.2 Journal bearing case study -- 17.3 Primal and dual formulation of journal bearing design -- 17.4 Dimensional analysis technique for additional equation -- 17.5 Evaluative questions -- 17.6 References -- 18. Multistory building design with a variable number of floors case study -- 18.1 Introduction -- 18.2 Problem formulation -- 18.3 Evaluative questions -- 18.4 References -- 19. Metal casting cylindrical side riser with hemispherical top design case study -- 19.1 Introduction -- 19.2 Problem formulation -- 19.3 Dimensional analysis technique for additional two equations -- 19.4 Evaluative questions -- 19.5 References -- 20. Liquefied petroleum gas (LPG) cylinders case study -- 20.1 Introduction -- 20.2 Problem formulation -- 20.3 Dimensional analysis technique for additional equation -- 20.4 Evaluative questions -- 20.5 References -- 21. Material removal/metal cutting economics with two constraints case study -- 21.1 Introduction -- 21.2 Problem formulation -- 21.3 Problem solution -- 21.4 Example problem -- 21.5 Evaluative questions -- 21.6 References -- 22. The open cargo shipping box with skids case study -- 22.1 Introduction -- 22.2 Primal and dual problem formulation -- 22.3 Constrained derivative approach -- 22.4 Dimensional analysis approach for additional equation -- 22.5 Condensation of terms approach -- 22.6 Evaluative questions -- 22.7 References -- 23. Profit maximization considering decreasing cost functions of inventory policy case study -- 23.1 Introduction -- 23.2 Model formulation -- 23.3 Inventory example problem with scaling constants for price and cost -- 23.4 Transformed dual approach -- 23.5 Evaluative questions -- 23.6 References --
Part V. Summary, future directions, theses and dissertations on geometric programming -- 24. Summary and future directions -- 24.1 Summary -- 24.2 Future directions -- 24.3 Development of new design relationships -- 25. Theses and dissertations on geometric programming -- 25.1 Introduction -- 25.2 Lists of M.S. theses and Ph.D. dissertations -- Author's biography -- Index.
Record Nr. UNINA-9910157722103321
Creese Robert C. <1941-, >  
[San Rafael, California] : , : Morgan & Claypool, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Robust and Error-Free Geometric Computing
Robust and Error-Free Geometric Computing
Autore Eberly Dave
Edizione [1st ed.]
Pubbl/distr/stampa [Place of publication not identified] : , : CRC Press (Unlimited) : , : CRC Press, , 2020
Descrizione fisica 1 online resource (xxiv, 363 pages)
Disciplina 516.08
516.00285
Soggetto topico Geometric programming
ISBN 1-000-05664-3
0-429-33050-2
1-000-05662-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Trademarks -- List of Figures -- List of Tables -- Listings -- 1 Introduction -- 1.1 Eigendecomposition for 3 × 3 Symmetric Matrices -- 1.1.1 Computing the Eigenvalues -- 1.1.2 Computing the Eigenvectors -- 1.1.3 A Nonrobust Floating-Point Implementation -- 1.1.4 A Robust Floating-Point Implementation -- 1.1.4.1 Computing the Eigenvalues -- 1.1.4.2 Computing the Eigenvectors -- 1.1.5 An Error-Free Implementation -- 1.2 Distance between Line Segments -- 1.2.1 Nonparallel Segments -- 1.2.2 Parallel Segments -- 1.2.3 A Nonrobust Floating-Point Implementation -- 1.2.4 A Robust Floating-Point Implementation -- 1.2.4.1 Conjugate Gradient Method -- 1.2.4.2 Constrained Conjugate Gradient Method -- 1.2.5 An Error-Free Implementation -- 2 Floating-Point Arithmetic -- 2.1 Binary Encodings -- 2.2 Binary Encoding of 32-bit Floating-Point Numbers -- 2.3 Binary Encoding of 64-bit Floating-Point Numbers -- 2.4 Rounding of Floating-Point Numbers -- 2.4.1 Round to Nearest with Ties to Even -- 2.4.2 Round to Nearest with Ties to Away -- 2.4.3 Round toward Zero -- 2.4.4 Round toward Positive -- 2.4.5 Round toward Negative -- 2.4.6 Rounding Support in C++ -- 3 Arbitrary-Precision Arithmetic -- 3.1 Binary Scientific Notation -- 3.2 Binary Scientific Numbers -- 3.2.1 Addition -- 3.2.2 Subtraction -- 3.2.3 Multiplication -- 3.3 Binary Scientific Rationals -- 3.3.1 Addition and Subtraction -- 3.3.2 Multiplication and Division -- 3.4 Conversions -- 3.4.1 Floating-Point Number to BSNumber -- 3.4.2 BSNumber to Floating-Point Number -- 3.4.3 BSRational to BSNumber of Specified Precision -- 3.4.4 BSNumber to BSNumber of Specified Precision -- 3.5 Performance Considerations -- 3.5.1 Static Computation of Maximum Precision -- 3.5.1.1 Addition and Subtraction -- 3.5.1.2 Multiplication.
3.5.2 Dynamic Computation of Maximum Precision -- 3.5.3 Memory Management -- 4 Interval Arithmetic -- 4.1 Arithmetic Operations -- 4.2 Signs of Determinants -- 4.3 Primal Queries -- 4.3.1 Queries in 2D -- 4.3.2 Queries in 3D -- 5 Quadratic-Field Arithmetic -- 5.1 Sources of Rounding Errors -- 5.1.1 Rounding Errors when Normalizing Vectors -- 5.1.2 Errors in Roots to Quadratic Equations -- 5.1.3 Intersection of Line and Cone Frustum -- 5.2 Real Quadratic Fields -- 5.2.1 Arithmetic Operations -- 5.2.2 Allowing for Non-Square-Free d -- 5.2.3 Allowing for Rational d -- 5.3 Comparisons of Quadratic Field Numbers -- 5.4 Quadratic Fields with Multiple Square Roots -- 5.4.1 Arithmetic Operations -- 5.4.2 Composition of Quadratic Fields -- 5.5 Estimating a Quadratic Field Number -- 5.5.1 Estimating a Rational Number -- 5.5.2 Estimating the Square Root of a Rational Number -- 5.5.3 Estimating a 1-Root Quadratic Field Number -- 5.5.4 Estimating a 2-Root Quadratic Field Number -- 5.5.4.1 Two Nonzero Radical Coefficients -- 5.5.4.2 Three Nonzero Radical Coefficients -- 6 Numerical Methods -- 6.1 Root Finding -- 6.1.1 Function Evaluation -- 6.1.2 Bisection -- 6.1.3 Newton's Method -- 6.1.4 Hybrid Newton-Bisection Method -- 6.1.5 Arbitrary-Precision Newton's Method -- 6.2 Polynomial Root Finding -- 6.2.1 Discriminants -- 6.2.2 Preprocessing the Polynomials -- 6.2.3 Quadratic Polynomial -- 6.2.4 Cubic Polynomial -- 6.2.4.1 Nonsimple Real Roots -- 6.2.4.2 One Simple Real Root -- 6.2.4.3 Three Simple Real Roots -- 6.2.5 Quartic Polynomial -- 6.2.5.1 Processing the Root Zero -- 6.2.5.2 The Biquadratic Case -- 6.2.5.3 Multiplicity Vector (3, 1, 0, 0) -- 6.2.5.4 Multiplicity Vector (2, 2, 0, 0) -- 6.2.5.5 Multiplicity Vector (2, 1, 1, 0) -- 6.2.5.6 Multiplicity Vector (1, 1, 1, 1) -- 6.2.6 High-Degree Polynomials -- 6.2.6.1 Bounding Root Sequences by Derivatives.
6.2.6.2 Bounding Roots by Sturm Sequences -- 6.2.6.3 Root Counting by Descartes' Rule of Signs -- 6.2.6.4 Real-Root Isolation -- 6.3 Linear Algebra -- 6.3.1 Systems of Linear Equations -- 6.3.2 Eigendecomposition for 2 × 2 Symmetric Matrices -- 6.3.3 Eigendecomposition for 3 × 3 Symmetric Matrices -- 6.3.4 3D Rotation Matrices with Rational Elements -- 7 Distance Queries -- 7.1 Introduction -- 7.1.1 The Quadratic Programming Problem -- 7.1.2 The Linear Complementarity Problem -- 7.1.3 The Convex Quadratic Programming Problem -- 7.1.3.1 Eliminating Unconstrained Variables -- 7.1.3.2 Reduction for Equality Constraints -- 7.2 Lemke's Method -- 7.2.1 Terms and Framework -- 7.2.2 LCP with a Unique Solution -- 7.2.3 LCP with Infinitely Many Solutions -- 7.2.4 LCP with No Solution -- 7.2.5 LCP with a Cycle -- 7.2.6 Avoiding Cycles when Constant Terms are Zero -- 7.3 Formulating a Geometric Query as a CQP -- 7.3.1 Distance Between Oriented Boxes -- 7.3.2 Test-Intersection of Triangle and Cylinder -- 7.4 Implementation Details -- 7.4.1 The LCP Solver -- 7.4.2 Distance Between Oriented Boxes in 3D -- 7.4.3 Test-Intersection of Triangle and Cylinder in 3D -- 7.4.4 Accuracy Problems with Floating-Point Arithmetic -- 7.4.5 Dealing with Vector Normalization -- 8 Intersection Queries -- 8.1 Method of Separating Axes -- 8.1.1 Separation by Projection onto a Line -- 8.1.2 Separation of Convex Polygons in 2D -- 8.1.3 Separation of Convex Polyhedra in 3D -- 8.1.4 Separation of Convex Polygons in 3D -- 8.1.5 Separation of Moving Convex Objects -- 8.1.6 Contact Set for Moving Convex Objects -- 8.2 Triangles Moving with Constant Linear Velocity -- 8.2.1 Two Moving Triangles in 2D -- 8.2.2 Two Moving Triangles in 3D -- 8.3 Linear Component and Sphere -- 8.3.1 Test-Intersection Queries -- 8.3.1.1 Line and Sphere -- 8.3.1.2 Ray and Sphere -- 8.3.1.3 Segment and Sphere.
8.3.2 Find-Intersection Queries -- 8.3.2.1 Line and Sphere -- 8.3.2.2 Ray and Sphere -- 8.3.2.3 Segment and Sphere -- 8.4 Linear Component and Box -- 8.4.1 Test-Intersection Queries -- 8.4.1.1 Lines and Boxes -- 8.4.1.2 Rays and Boxes -- 8.4.1.3 Segments and Boxes -- 8.4.2 Find-Intersection Queries -- 8.4.2.1 Liang-Barsky Clipping -- 8.4.2.2 Lines and Boxes -- 8.4.2.3 Rays and Boxes -- 8.4.2.4 Segments and Boxes -- 8.5 Line and Cone -- 8.5.1 Definition of Cones -- 8.5.2 Practical Matters for Representing Infinity -- 8.5.3 Definition of a Line, Ray and Segment -- 8.5.4 Intersection with a Line -- 8.5.4.1 Case c2 ≠ 0 -- 8.5.4.2 Case c2 = 0 and c1 ≠ 0 -- 8.5.4.3 Case c2 = 0 and c1 = 0 -- 8.5.5 Clamping to the Cone Height Range -- 8.5.6 Pseudocode for Error-Free Arithmetic -- 8.5.6.1 Intersection of Intervals -- 8.5.6.2 Line-Cone Query -- 8.5.7 Intersection with a Ray -- 8.5.8 Intersection with a Segment -- 8.5.9 Implementation using Quadratic-Field Arithmetic -- 8.6 Intersection of Ellipses -- 8.6.1 Ellipse Representations -- 8.6.1.1 The Standard Form for an Ellipse -- 8.6.1.2 Conversion to a Quadratic Equation -- 8.6.2 Test-Intersection Query for Ellipses -- 8.6.3 Find-Intersection Query for Ellipses -- 8.6.3.1 Case d4 ≠ 0 and e(x̄) ≠ 0 -- 8.6.3.2 Case d4 ≠ 0 and e(x̄) = 0 -- 8.6.3.3 Case d4 = 0, d2 ≠ 0 and e2 ≠ 0 -- 8.6.3.4 Case d4 = 0, d2 ≠ 0 and e2 = 0 -- 8.6.3.5 Case d4 = 0 and d2 = 0 -- 8.7 Intersection of Ellipsoids -- 8.7.1 Ellipsoid Representations -- 8.7.1.1 The Standard Form for an Ellipsoid -- 8.7.1.2 Conversion to a Quadratic Equation -- 8.7.2 Test-Intersection Query for Ellipsoids -- 8.7.3 Find-Intersection Query for Ellipsoids -- 8.7.3.1 Two Spheres -- 8.7.3.2 Sphere-Ellipsoid: 3-Zero Center -- 8.7.3.3 Sphere-Ellipsoid: 2-Zero Center -- 8.7.3.4 Sphere-Ellipsoid: 1-Zero Center -- 8.7.3.5 Sphere-Ellipsoid: No-Zero Center.
8.7.3.6 Reduction to a Sphere-Ellipsoid Query -- 9 Computational Geometry Algorithms -- 9.1 Convex Hull of Points in 2D -- 9.1.1 Incremental Construction -- 9.1.2 Divide-and-Conquer Method -- 9.2 Convex Hull of Points in 3D -- 9.2.1 Incremental Construction -- 9.2.2 Divide-and-Conquer Method -- 9.3 Delaunay Triangulation -- 9.3.1 Incremental Construction -- 9.3.1.1 Inserting Points -- 9.3.1.2 Linear Walks and Intrinsic Dimension -- 9.3.1.3 The Insertion Step -- 9.3.2 Construction by Convex Hull -- 9.4 Minimum-Area Circle of Points -- 9.5 Minimum-Volume Sphere of Points -- 9.6 Minimum-Area Rectangle of Points -- 9.6.1 The Exhaustive Search Algorithm -- 9.6.2 The Rotating Calipers Algorithm -- 9.6.2.1 Computing the Initial Rectangle -- 9.6.2.2 Updating the Rectangle -- 9.6.2.3 Distinct Supporting Vertices -- 9.6.2.4 Duplicate Supporting Vertices -- 9.6.2.5 Multiple Polygon Edges of Minimum Angle -- 9.6.2.6 The General Update Step -- 9.6.3 A Robust Implementation -- 9.6.3.1 Avoiding Normalization -- 9.6.3.2 Indirect Comparisons of Angles -- 9.6.3.3 Updating the Support Information -- 9.6.3.4 Conversion to a Floating-Point Rectangle -- 9.7 Minimum-Volume Box of Points -- 9.7.1 Processing Hull Faces -- 9.7.1.1 Comparing Areas -- 9.7.1.2 Comparing Volumes -- 9.7.1.3 Comparing Angles -- 9.7.2 Processing Hull Edges -- 9.7.3 Conversion to a Floating-Point Box -- Bibliography -- Index.
Record Nr. UNINA-9910861995303321
Eberly Dave  
[Place of publication not identified] : , : CRC Press (Unlimited) : , : CRC Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui