Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
| Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others] |
| Autore | Paoluzzi Alberto |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Chichester, West Sussex, England : , : Wiley, , 2003 |
| Descrizione fisica | 1 online resource (945 pages) : illustrations |
| Disciplina | 620.00420285 |
| Soggetto topico |
Geometric programming
Computer-aided design |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-50912-2
9786610554102 0-470-01388-5 1-280-55410-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910143230703321 |
Paoluzzi Alberto
|
||
| Chichester, West Sussex, England : , : Wiley, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others]
| Geometric programming for computer aided design / / Alberto Paoluzzi ; with contributions from Valerio Pascucci [and three others] |
| Autore | Paoluzzi Alberto |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Chichester, West Sussex, England : , : Wiley, , 2003 |
| Descrizione fisica | 1 online resource (945 pages) : illustrations |
| Disciplina | 620.00420285 |
| Soggetto topico |
Geometric programming
Computer-aided design |
| ISBN |
1-119-50912-2
9786610554102 0-470-01388-5 1-280-55410-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830961103321 |
Paoluzzi Alberto
|
||
| Chichester, West Sussex, England : , : Wiley, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometric programming for design equation development and cost/profit optimization : (with illustrative case study problems and solutions) / / Robert C. Creese
| Geometric programming for design equation development and cost/profit optimization : (with illustrative case study problems and solutions) / / Robert C. Creese |
| Autore | Creese Robert C. <1941-, > |
| Edizione | [Third edition.] |
| Pubbl/distr/stampa | [San Rafael, California] : , : Morgan & Claypool, , 2017 |
| Descrizione fisica | 1 online resource (212 pages) : illustrations, tables |
| Disciplina | 516 |
| Collana | Synthesis lectures on engineering |
| Soggetto topico | Geometric programming |
| Soggetto non controllato |
design optimization
generalized design relationships cost optimization profit maximization cost ratios constrained derivative dimensional analysis condensation of terms transformed dual posynominials |
| ISBN | 1-62705-936-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Part I. Introduction, history, and theoretical fundamentals of geometric programming -- 1. Introduction -- 1.1 Optimization and geometric programming -- 1.1.1 Optimization -- 1.1.2 Geometric programming -- 1.2 Evaluative questions -- 1.3 References -- 2.Brief history of geometric programming -- 2.1 Pioneers of geometric programming -- 2.2 Evaluative questions -- 2.3 References -- 3. Theoretical fundamentals -- 3.1 Primal and dual formulations -- 3.2 Evaluative questions -- 3.3 References --
Part II. Geometric programming cost minimization applications with zero degrees of difficulty -- 4. The optimal box design case study -- 4.1 Introduction -- 4.2 The optimal box design problem -- 4.3 Evaluative questions -- 5. Trash can case study -- 5.1 Introduction -- 5.2 The optimal trash can design problem -- 5.3 Evaluative questions -- 5.4 References -- 6. The building area design case study -- 6.1 Introduction -- 6.2 The building area design problem -- 6.3 Problem solution -- 6.4 Modified building area design problem -- 6.5 Fixed room height area design problem -- 6.6 Evaluative questions -- 6.7 References -- 7. The open cargo shipping box case study -- 7.1 Problem statement and general solution -- 7.2 Evaluative questions -- 7.3 References -- 8. Metal casting cylindrical side riser case study -- 8.1 Introduction -- 8.2 Problem formulation and general solution -- 8.3 Cylindrical side riser example -- 8.4 Evaluative questions -- 8.5 References -- 9. Inventory model case study -- 9.1 Problem statement and general solution -- 9.2 Inventory example problem -- 9.3 Evaluative questions -- 9.4 References -- 10. Process furnace design case study -- 10.1 Problem statement and solution -- 10.2 Conclusions -- 10.3 Evaluative questions -- 10.4 References -- 11. The gas transmission pipeline case study -- 11.1 Problem statement and solution -- 11.2 Evaluative questions -- 11.3 References -- 12. Material removal/metal cutting economics case study -- 12.1 Introduction -- 12.2 Problem formulation -- 12.3 Evaluative questions -- 12.4 References -- 13. Construction building sector cost minimization case study -- 13.1 Introduction -- 13.2 Model development -- 13.3 Model results and validation -- 13.4 Conclusions -- 13.5 Evaluative questions -- 13.6 References -- Part III. Geometric programming profit maximization applications with zero degrees of difficulty -- 14. Production function profit maximization case study -- 14.1 Profit maximization with geometric programming -- 14.2 Profit maximization of the production function case study -- 14.3 Evaluative questions -- 14.4 References -- 15. Product mix profit maximization case study -- 15.1 Profit maximization using the Cobb-Douglas production function -- 15.2 Evaluative questions -- 15.3 References -- 16. Chemical plant product profitability case study -- 16.1 Model formulation -- 16.2 Primal and dual solutions -- 16.3 Evaluative questions -- 16.4 References -- Part IV. Geometric programming applications with positive degrees of difficulty -- 17. Journal bearing design case study -- 17.1 Issues with positive degrees of difficulty problems -- 17.2 Journal bearing case study -- 17.3 Primal and dual formulation of journal bearing design -- 17.4 Dimensional analysis technique for additional equation -- 17.5 Evaluative questions -- 17.6 References -- 18. Multistory building design with a variable number of floors case study -- 18.1 Introduction -- 18.2 Problem formulation -- 18.3 Evaluative questions -- 18.4 References -- 19. Metal casting cylindrical side riser with hemispherical top design case study -- 19.1 Introduction -- 19.2 Problem formulation -- 19.3 Dimensional analysis technique for additional two equations -- 19.4 Evaluative questions -- 19.5 References -- 20. Liquefied petroleum gas (LPG) cylinders case study -- 20.1 Introduction -- 20.2 Problem formulation -- 20.3 Dimensional analysis technique for additional equation -- 20.4 Evaluative questions -- 20.5 References -- 21. Material removal/metal cutting economics with two constraints case study -- 21.1 Introduction -- 21.2 Problem formulation -- 21.3 Problem solution -- 21.4 Example problem -- 21.5 Evaluative questions -- 21.6 References -- 22. The open cargo shipping box with skids case study -- 22.1 Introduction -- 22.2 Primal and dual problem formulation -- 22.3 Constrained derivative approach -- 22.4 Dimensional analysis approach for additional equation -- 22.5 Condensation of terms approach -- 22.6 Evaluative questions -- 22.7 References -- 23. Profit maximization considering decreasing cost functions of inventory policy case study -- 23.1 Introduction -- 23.2 Model formulation -- 23.3 Inventory example problem with scaling constants for price and cost -- 23.4 Transformed dual approach -- 23.5 Evaluative questions -- 23.6 References -- Part V. Summary, future directions, theses and dissertations on geometric programming -- 24. Summary and future directions -- 24.1 Summary -- 24.2 Future directions -- 24.3 Development of new design relationships -- 25. Theses and dissertations on geometric programming -- 25.1 Introduction -- 25.2 Lists of M.S. theses and Ph.D. dissertations -- Author's biography -- Index. |
| Record Nr. | UNINA-9910157722103321 |
Creese Robert C. <1941-, >
|
||
| [San Rafael, California] : , : Morgan & Claypool, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Robust and Error-Free Geometric Computing
| Robust and Error-Free Geometric Computing |
| Autore | Eberly Dave |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | [Place of publication not identified] : , : CRC Press (Unlimited) : , : CRC Press, , 2020 |
| Descrizione fisica | 1 online resource (xxiv, 363 pages) |
| Disciplina |
516.08
516.00285 |
| Soggetto topico | Geometric programming |
| ISBN |
1-000-05664-3
0-429-33050-2 1-000-05662-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Trademarks -- List of Figures -- List of Tables -- Listings -- 1 Introduction -- 1.1 Eigendecomposition for 3 × 3 Symmetric Matrices -- 1.1.1 Computing the Eigenvalues -- 1.1.2 Computing the Eigenvectors -- 1.1.3 A Nonrobust Floating-Point Implementation -- 1.1.4 A Robust Floating-Point Implementation -- 1.1.4.1 Computing the Eigenvalues -- 1.1.4.2 Computing the Eigenvectors -- 1.1.5 An Error-Free Implementation -- 1.2 Distance between Line Segments -- 1.2.1 Nonparallel Segments -- 1.2.2 Parallel Segments -- 1.2.3 A Nonrobust Floating-Point Implementation -- 1.2.4 A Robust Floating-Point Implementation -- 1.2.4.1 Conjugate Gradient Method -- 1.2.4.2 Constrained Conjugate Gradient Method -- 1.2.5 An Error-Free Implementation -- 2 Floating-Point Arithmetic -- 2.1 Binary Encodings -- 2.2 Binary Encoding of 32-bit Floating-Point Numbers -- 2.3 Binary Encoding of 64-bit Floating-Point Numbers -- 2.4 Rounding of Floating-Point Numbers -- 2.4.1 Round to Nearest with Ties to Even -- 2.4.2 Round to Nearest with Ties to Away -- 2.4.3 Round toward Zero -- 2.4.4 Round toward Positive -- 2.4.5 Round toward Negative -- 2.4.6 Rounding Support in C++ -- 3 Arbitrary-Precision Arithmetic -- 3.1 Binary Scientific Notation -- 3.2 Binary Scientific Numbers -- 3.2.1 Addition -- 3.2.2 Subtraction -- 3.2.3 Multiplication -- 3.3 Binary Scientific Rationals -- 3.3.1 Addition and Subtraction -- 3.3.2 Multiplication and Division -- 3.4 Conversions -- 3.4.1 Floating-Point Number to BSNumber -- 3.4.2 BSNumber to Floating-Point Number -- 3.4.3 BSRational to BSNumber of Specified Precision -- 3.4.4 BSNumber to BSNumber of Specified Precision -- 3.5 Performance Considerations -- 3.5.1 Static Computation of Maximum Precision -- 3.5.1.1 Addition and Subtraction -- 3.5.1.2 Multiplication.
3.5.2 Dynamic Computation of Maximum Precision -- 3.5.3 Memory Management -- 4 Interval Arithmetic -- 4.1 Arithmetic Operations -- 4.2 Signs of Determinants -- 4.3 Primal Queries -- 4.3.1 Queries in 2D -- 4.3.2 Queries in 3D -- 5 Quadratic-Field Arithmetic -- 5.1 Sources of Rounding Errors -- 5.1.1 Rounding Errors when Normalizing Vectors -- 5.1.2 Errors in Roots to Quadratic Equations -- 5.1.3 Intersection of Line and Cone Frustum -- 5.2 Real Quadratic Fields -- 5.2.1 Arithmetic Operations -- 5.2.2 Allowing for Non-Square-Free d -- 5.2.3 Allowing for Rational d -- 5.3 Comparisons of Quadratic Field Numbers -- 5.4 Quadratic Fields with Multiple Square Roots -- 5.4.1 Arithmetic Operations -- 5.4.2 Composition of Quadratic Fields -- 5.5 Estimating a Quadratic Field Number -- 5.5.1 Estimating a Rational Number -- 5.5.2 Estimating the Square Root of a Rational Number -- 5.5.3 Estimating a 1-Root Quadratic Field Number -- 5.5.4 Estimating a 2-Root Quadratic Field Number -- 5.5.4.1 Two Nonzero Radical Coefficients -- 5.5.4.2 Three Nonzero Radical Coefficients -- 6 Numerical Methods -- 6.1 Root Finding -- 6.1.1 Function Evaluation -- 6.1.2 Bisection -- 6.1.3 Newton's Method -- 6.1.4 Hybrid Newton-Bisection Method -- 6.1.5 Arbitrary-Precision Newton's Method -- 6.2 Polynomial Root Finding -- 6.2.1 Discriminants -- 6.2.2 Preprocessing the Polynomials -- 6.2.3 Quadratic Polynomial -- 6.2.4 Cubic Polynomial -- 6.2.4.1 Nonsimple Real Roots -- 6.2.4.2 One Simple Real Root -- 6.2.4.3 Three Simple Real Roots -- 6.2.5 Quartic Polynomial -- 6.2.5.1 Processing the Root Zero -- 6.2.5.2 The Biquadratic Case -- 6.2.5.3 Multiplicity Vector (3, 1, 0, 0) -- 6.2.5.4 Multiplicity Vector (2, 2, 0, 0) -- 6.2.5.5 Multiplicity Vector (2, 1, 1, 0) -- 6.2.5.6 Multiplicity Vector (1, 1, 1, 1) -- 6.2.6 High-Degree Polynomials -- 6.2.6.1 Bounding Root Sequences by Derivatives. 6.2.6.2 Bounding Roots by Sturm Sequences -- 6.2.6.3 Root Counting by Descartes' Rule of Signs -- 6.2.6.4 Real-Root Isolation -- 6.3 Linear Algebra -- 6.3.1 Systems of Linear Equations -- 6.3.2 Eigendecomposition for 2 × 2 Symmetric Matrices -- 6.3.3 Eigendecomposition for 3 × 3 Symmetric Matrices -- 6.3.4 3D Rotation Matrices with Rational Elements -- 7 Distance Queries -- 7.1 Introduction -- 7.1.1 The Quadratic Programming Problem -- 7.1.2 The Linear Complementarity Problem -- 7.1.3 The Convex Quadratic Programming Problem -- 7.1.3.1 Eliminating Unconstrained Variables -- 7.1.3.2 Reduction for Equality Constraints -- 7.2 Lemke's Method -- 7.2.1 Terms and Framework -- 7.2.2 LCP with a Unique Solution -- 7.2.3 LCP with Infinitely Many Solutions -- 7.2.4 LCP with No Solution -- 7.2.5 LCP with a Cycle -- 7.2.6 Avoiding Cycles when Constant Terms are Zero -- 7.3 Formulating a Geometric Query as a CQP -- 7.3.1 Distance Between Oriented Boxes -- 7.3.2 Test-Intersection of Triangle and Cylinder -- 7.4 Implementation Details -- 7.4.1 The LCP Solver -- 7.4.2 Distance Between Oriented Boxes in 3D -- 7.4.3 Test-Intersection of Triangle and Cylinder in 3D -- 7.4.4 Accuracy Problems with Floating-Point Arithmetic -- 7.4.5 Dealing with Vector Normalization -- 8 Intersection Queries -- 8.1 Method of Separating Axes -- 8.1.1 Separation by Projection onto a Line -- 8.1.2 Separation of Convex Polygons in 2D -- 8.1.3 Separation of Convex Polyhedra in 3D -- 8.1.4 Separation of Convex Polygons in 3D -- 8.1.5 Separation of Moving Convex Objects -- 8.1.6 Contact Set for Moving Convex Objects -- 8.2 Triangles Moving with Constant Linear Velocity -- 8.2.1 Two Moving Triangles in 2D -- 8.2.2 Two Moving Triangles in 3D -- 8.3 Linear Component and Sphere -- 8.3.1 Test-Intersection Queries -- 8.3.1.1 Line and Sphere -- 8.3.1.2 Ray and Sphere -- 8.3.1.3 Segment and Sphere. 8.3.2 Find-Intersection Queries -- 8.3.2.1 Line and Sphere -- 8.3.2.2 Ray and Sphere -- 8.3.2.3 Segment and Sphere -- 8.4 Linear Component and Box -- 8.4.1 Test-Intersection Queries -- 8.4.1.1 Lines and Boxes -- 8.4.1.2 Rays and Boxes -- 8.4.1.3 Segments and Boxes -- 8.4.2 Find-Intersection Queries -- 8.4.2.1 Liang-Barsky Clipping -- 8.4.2.2 Lines and Boxes -- 8.4.2.3 Rays and Boxes -- 8.4.2.4 Segments and Boxes -- 8.5 Line and Cone -- 8.5.1 Definition of Cones -- 8.5.2 Practical Matters for Representing Infinity -- 8.5.3 Definition of a Line, Ray and Segment -- 8.5.4 Intersection with a Line -- 8.5.4.1 Case c2 ≠ 0 -- 8.5.4.2 Case c2 = 0 and c1 ≠ 0 -- 8.5.4.3 Case c2 = 0 and c1 = 0 -- 8.5.5 Clamping to the Cone Height Range -- 8.5.6 Pseudocode for Error-Free Arithmetic -- 8.5.6.1 Intersection of Intervals -- 8.5.6.2 Line-Cone Query -- 8.5.7 Intersection with a Ray -- 8.5.8 Intersection with a Segment -- 8.5.9 Implementation using Quadratic-Field Arithmetic -- 8.6 Intersection of Ellipses -- 8.6.1 Ellipse Representations -- 8.6.1.1 The Standard Form for an Ellipse -- 8.6.1.2 Conversion to a Quadratic Equation -- 8.6.2 Test-Intersection Query for Ellipses -- 8.6.3 Find-Intersection Query for Ellipses -- 8.6.3.1 Case d4 ≠ 0 and e(x̄) ≠ 0 -- 8.6.3.2 Case d4 ≠ 0 and e(x̄) = 0 -- 8.6.3.3 Case d4 = 0, d2 ≠ 0 and e2 ≠ 0 -- 8.6.3.4 Case d4 = 0, d2 ≠ 0 and e2 = 0 -- 8.6.3.5 Case d4 = 0 and d2 = 0 -- 8.7 Intersection of Ellipsoids -- 8.7.1 Ellipsoid Representations -- 8.7.1.1 The Standard Form for an Ellipsoid -- 8.7.1.2 Conversion to a Quadratic Equation -- 8.7.2 Test-Intersection Query for Ellipsoids -- 8.7.3 Find-Intersection Query for Ellipsoids -- 8.7.3.1 Two Spheres -- 8.7.3.2 Sphere-Ellipsoid: 3-Zero Center -- 8.7.3.3 Sphere-Ellipsoid: 2-Zero Center -- 8.7.3.4 Sphere-Ellipsoid: 1-Zero Center -- 8.7.3.5 Sphere-Ellipsoid: No-Zero Center. 8.7.3.6 Reduction to a Sphere-Ellipsoid Query -- 9 Computational Geometry Algorithms -- 9.1 Convex Hull of Points in 2D -- 9.1.1 Incremental Construction -- 9.1.2 Divide-and-Conquer Method -- 9.2 Convex Hull of Points in 3D -- 9.2.1 Incremental Construction -- 9.2.2 Divide-and-Conquer Method -- 9.3 Delaunay Triangulation -- 9.3.1 Incremental Construction -- 9.3.1.1 Inserting Points -- 9.3.1.2 Linear Walks and Intrinsic Dimension -- 9.3.1.3 The Insertion Step -- 9.3.2 Construction by Convex Hull -- 9.4 Minimum-Area Circle of Points -- 9.5 Minimum-Volume Sphere of Points -- 9.6 Minimum-Area Rectangle of Points -- 9.6.1 The Exhaustive Search Algorithm -- 9.6.2 The Rotating Calipers Algorithm -- 9.6.2.1 Computing the Initial Rectangle -- 9.6.2.2 Updating the Rectangle -- 9.6.2.3 Distinct Supporting Vertices -- 9.6.2.4 Duplicate Supporting Vertices -- 9.6.2.5 Multiple Polygon Edges of Minimum Angle -- 9.6.2.6 The General Update Step -- 9.6.3 A Robust Implementation -- 9.6.3.1 Avoiding Normalization -- 9.6.3.2 Indirect Comparisons of Angles -- 9.6.3.3 Updating the Support Information -- 9.6.3.4 Conversion to a Floating-Point Rectangle -- 9.7 Minimum-Volume Box of Points -- 9.7.1 Processing Hull Faces -- 9.7.1.1 Comparing Areas -- 9.7.1.2 Comparing Volumes -- 9.7.1.3 Comparing Angles -- 9.7.2 Processing Hull Edges -- 9.7.3 Conversion to a Floating-Point Box -- Bibliography -- Index. |
| Record Nr. | UNINA-9910861995303321 |
Eberly Dave
|
||
| [Place of publication not identified] : , : CRC Press (Unlimited) : , : CRC Press, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||