Algebra VII : combinatorial group theory applications to geometry / eds. A. N. Parshin, I. R. Shafarevich |
Autore | Parshin, A. N. |
Edizione | [Engl. ed] |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1993 |
Descrizione fisica | 240 p. ; 24 cm. |
Disciplina | 512.22 |
Altri autori (Persone) | Shafarevich, Igor Rostislavovich |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 58 |
Soggetto topico |
Combinatorial group theory
Geometric group theory |
ISBN | 3540547002 |
Classificazione |
AMS 00A20
AMS 08A50 AMS 20E AMS 20F AMS 20H10 AMS 20J05 AMS 57M AMS 57N10 AMS 68Q68 QA182.5A43 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000654989707536 |
Parshin, A. N.
![]() |
||
Berlin : Springer-Verlag, c1993 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910480983703321 |
Handel Michael <1949->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910788867203321 |
Handel Michael <1949->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910828112203321 |
Handel Michael <1949->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Combinatorial and geometric group theory : AMS special session, combinatorial group theory, November 4-5, 2000, New York, New York : AMS special session, computational group theory, April 28-29, 2001, Hoboken, New Jersey / / Sean Cleary [and three others], editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (290 p.) |
Disciplina | 512/.2 |
Collana | Contemporary mathematics |
Soggetto topico |
Combinatorial group theory
Geometric group theory |
Soggetto genere / forma | Electronic books. |
ISBN |
0-8218-7886-7
0-8218-5632-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Open problems in combinatorial group theory. Second edition""; ""1. Outstanding Problems""; ""2. Free Groups""; ""3. One-relator Groups""; ""4. Finitely Presented Groups""; ""5. Hyperbolic and Automatic Groups""; ""6. Braid Groups""; ""7. Nilpotent Groups""; ""8. Metabelian Groups""; ""9. Solvable Groups""; ""10. Groups of Matrices""; ""11. Growth""; ""Boundaries of hyperbolic groups""; ""Thin groups of fractions""; ""Every abelian group universally equivalent to a discriminating group is elementarily equivalent to a discriminating group""
""Weakly finitely presented infinite periodic groups""""Positively generated subgroups of free groups and the Hanna Neumann conjecture""; ""On the proalgebraic completion of a finitely generated group""; ""On the Andrews-Curtis equivalence""; ""Test ranks of finitely generated abelian groups""; ""Classification of the finite generalized tetrahedron groups""; ""Fixed subgroups in free groups: A survey""; ""Automorphisms of surfaces"" |
Record Nr. | UNINA-9910480941003321 |
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Combinatorial and geometric group theory : AMS special session, combinatorial group theory, November 4-5, 2000, New York, New York : AMS special session, computational group theory, April 28-29, 2001, Hoboken, New Jersey / / Sean Cleary [and three others], editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (290 p.) |
Disciplina | 512/.2 |
Collana | Contemporary mathematics |
Soggetto topico |
Combinatorial group theory
Geometric group theory |
ISBN |
0-8218-7886-7
0-8218-5632-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Open problems in combinatorial group theory. Second edition""; ""1. Outstanding Problems""; ""2. Free Groups""; ""3. One-relator Groups""; ""4. Finitely Presented Groups""; ""5. Hyperbolic and Automatic Groups""; ""6. Braid Groups""; ""7. Nilpotent Groups""; ""8. Metabelian Groups""; ""9. Solvable Groups""; ""10. Groups of Matrices""; ""11. Growth""; ""Boundaries of hyperbolic groups""; ""Thin groups of fractions""; ""Every abelian group universally equivalent to a discriminating group is elementarily equivalent to a discriminating group""
""Weakly finitely presented infinite periodic groups""""Positively generated subgroups of free groups and the Hanna Neumann conjecture""; ""On the proalgebraic completion of a finitely generated group""; ""On the Andrews-Curtis equivalence""; ""Test ranks of finitely generated abelian groups""; ""Classification of the finite generalized tetrahedron groups""; ""Fixed subgroups in free groups: A survey""; ""Automorphisms of surfaces"" |
Record Nr. | UNINA-9910788657203321 |
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Combinatorial and geometric group theory : AMS special session, combinatorial group theory, November 4-5, 2000, New York, New York : AMS special session, computational group theory, April 28-29, 2001, Hoboken, New Jersey / / Sean Cleary [and three others], editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (290 p.) |
Disciplina | 512/.2 |
Collana | Contemporary mathematics |
Soggetto topico |
Combinatorial group theory
Geometric group theory |
ISBN |
0-8218-7886-7
0-8218-5632-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Open problems in combinatorial group theory. Second edition""; ""1. Outstanding Problems""; ""2. Free Groups""; ""3. One-relator Groups""; ""4. Finitely Presented Groups""; ""5. Hyperbolic and Automatic Groups""; ""6. Braid Groups""; ""7. Nilpotent Groups""; ""8. Metabelian Groups""; ""9. Solvable Groups""; ""10. Groups of Matrices""; ""11. Growth""; ""Boundaries of hyperbolic groups""; ""Thin groups of fractions""; ""Every abelian group universally equivalent to a discriminating group is elementarily equivalent to a discriminating group""
""Weakly finitely presented infinite periodic groups""""Positively generated subgroups of free groups and the Hanna Neumann conjecture""; ""On the proalgebraic completion of a finitely generated group""; ""On the Andrews-Curtis equivalence""; ""Test ranks of finitely generated abelian groups""; ""Classification of the finite generalized tetrahedron groups""; ""Fixed subgroups in free groups: A survey""; ""Automorphisms of surfaces"" |
Record Nr. | UNINA-9910817174503321 |
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Connectivity properties of group actions on non-positively curved spaces / / Robert Bieri, Ross Geoghegan |
Autore | Bieri Robert |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina |
510 s
512/.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Connections (Mathematics) Global differential geometry |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0363-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Cocompact is an open condition""; ""1.2. Controlled connectivity""; ""1.3. The Boundary Criterion""; ""1.4. The Geometric Invariants""; ""Part 1. Controlled connectivity and openness results""; ""Chapter 2. Outline, Main Results and Examples""; ""2.1. Non-positively curved spaces""; ""2.2. Controlled connectivity: the definition of CC[sup(n-1)]""; ""2.3. The case of discrete orbits""; ""2.4. The Openness Theorem""; ""2.5. Connections with Lie groups and local rigidity""; ""2.6. The new tool""; ""2.7. Summary of the core idea""
""2.8. SL[sup(2)] examples""""Chapter 3. Technicalities Concerning the CC[sup(n-1)]Property""; ""3.1. Local and global versions of CC[sup(n-1)]""; ""3.2. The Invariance Theorem""; ""Chapter 4. Finitary Maps and Sheaves of Maps""; ""4.1. Sheaves of maps""; ""4.2. G-sheaves""; ""4.3. Locally finite sheaves""; ""4.4. Embedding sheaves into homotopically closed sheaves""; ""4.5. Composing sheaves""; ""4.6. Homotopy of sheaves""; ""4.7. Finitary maps""; ""Chapter 5. Sheaves and Finitary Maps Over a Control Space""; ""5.1. Displacement function and norm""; ""5.2. Shift towards a point of M"" ""5.3. Contractions""""5.4. Guaranteed shift""; ""5.5. Defect of a sheaf""; ""Chapter 6. Construction of Sheaves with Positive Shift""; ""6.1. The case when dim X = 0""; ""6.2. Measuring the loss of guaranteed shift in an extension""; ""6.3. Imposing CAT(0)""; ""6.4. The main technical theorem""; ""Chapter 7. Controlled Connectivity as an Open Condition""; ""7.1. The topology on the set of all G-actions""; ""7.2. Continuous choice of control functions""; ""7.3. Imposing CAT(0)""; ""7.4. The Openness Theorem""; ""Chapter 8. Completion of the proofs of Theorems A and A'"" ""8.1. Controlled acyclicity""""8.2. The F[sub(n)] Criterion""; ""8.3. Proof of Theorem A""; ""8.4. Properly discontinuous actions""; ""Chapter 9. The Invariance Theorem""; ""Part 2. The geometric invariants""; ""Short summary of Part 2""; ""Chapter 10. Outline, Main Results and Examples""; ""10.1. The boundary of a CAT(0)-space""; ""10.2. CC[sup(n-1)] over end points""; ""10.3. The dynamical subset""; ""10.4. Openness results""; ""10.5. Endpoints versus points in M""; ""10.6. Fixed points and the BNSR-geometric invariant""; ""10.7. Examples"" ""Chapter 14. From CC[sup(n-1)] over Endpoints to Contractions"" |
Record Nr. | UNINA-9910480949703321 |
Bieri Robert
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Connectivity properties of group actions on non-positively curved spaces / / Robert Bieri, Ross Geoghegan |
Autore | Bieri Robert |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina |
510 s
512/.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Connections (Mathematics) Global differential geometry |
ISBN | 1-4704-0363-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Cocompact is an open condition""; ""1.2. Controlled connectivity""; ""1.3. The Boundary Criterion""; ""1.4. The Geometric Invariants""; ""Part 1. Controlled connectivity and openness results""; ""Chapter 2. Outline, Main Results and Examples""; ""2.1. Non-positively curved spaces""; ""2.2. Controlled connectivity: the definition of CC[sup(n-1)]""; ""2.3. The case of discrete orbits""; ""2.4. The Openness Theorem""; ""2.5. Connections with Lie groups and local rigidity""; ""2.6. The new tool""; ""2.7. Summary of the core idea""
""2.8. SL[sup(2)] examples""""Chapter 3. Technicalities Concerning the CC[sup(n-1)]Property""; ""3.1. Local and global versions of CC[sup(n-1)]""; ""3.2. The Invariance Theorem""; ""Chapter 4. Finitary Maps and Sheaves of Maps""; ""4.1. Sheaves of maps""; ""4.2. G-sheaves""; ""4.3. Locally finite sheaves""; ""4.4. Embedding sheaves into homotopically closed sheaves""; ""4.5. Composing sheaves""; ""4.6. Homotopy of sheaves""; ""4.7. Finitary maps""; ""Chapter 5. Sheaves and Finitary Maps Over a Control Space""; ""5.1. Displacement function and norm""; ""5.2. Shift towards a point of M"" ""5.3. Contractions""""5.4. Guaranteed shift""; ""5.5. Defect of a sheaf""; ""Chapter 6. Construction of Sheaves with Positive Shift""; ""6.1. The case when dim X = 0""; ""6.2. Measuring the loss of guaranteed shift in an extension""; ""6.3. Imposing CAT(0)""; ""6.4. The main technical theorem""; ""Chapter 7. Controlled Connectivity as an Open Condition""; ""7.1. The topology on the set of all G-actions""; ""7.2. Continuous choice of control functions""; ""7.3. Imposing CAT(0)""; ""7.4. The Openness Theorem""; ""Chapter 8. Completion of the proofs of Theorems A and A'"" ""8.1. Controlled acyclicity""""8.2. The F[sub(n)] Criterion""; ""8.3. Proof of Theorem A""; ""8.4. Properly discontinuous actions""; ""Chapter 9. The Invariance Theorem""; ""Part 2. The geometric invariants""; ""Short summary of Part 2""; ""Chapter 10. Outline, Main Results and Examples""; ""10.1. The boundary of a CAT(0)-space""; ""10.2. CC[sup(n-1)] over end points""; ""10.3. The dynamical subset""; ""10.4. Openness results""; ""10.5. Endpoints versus points in M""; ""10.6. Fixed points and the BNSR-geometric invariant""; ""10.7. Examples"" ""Chapter 14. From CC[sup(n-1)] over Endpoints to Contractions"" |
Record Nr. | UNINA-9910788848403321 |
Bieri Robert
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Connectivity properties of group actions on non-positively curved spaces / / Robert Bieri, Ross Geoghegan |
Autore | Bieri Robert |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina |
510 s
512/.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Connections (Mathematics) Global differential geometry |
ISBN | 1-4704-0363-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Cocompact is an open condition""; ""1.2. Controlled connectivity""; ""1.3. The Boundary Criterion""; ""1.4. The Geometric Invariants""; ""Part 1. Controlled connectivity and openness results""; ""Chapter 2. Outline, Main Results and Examples""; ""2.1. Non-positively curved spaces""; ""2.2. Controlled connectivity: the definition of CC[sup(n-1)]""; ""2.3. The case of discrete orbits""; ""2.4. The Openness Theorem""; ""2.5. Connections with Lie groups and local rigidity""; ""2.6. The new tool""; ""2.7. Summary of the core idea""
""2.8. SL[sup(2)] examples""""Chapter 3. Technicalities Concerning the CC[sup(n-1)]Property""; ""3.1. Local and global versions of CC[sup(n-1)]""; ""3.2. The Invariance Theorem""; ""Chapter 4. Finitary Maps and Sheaves of Maps""; ""4.1. Sheaves of maps""; ""4.2. G-sheaves""; ""4.3. Locally finite sheaves""; ""4.4. Embedding sheaves into homotopically closed sheaves""; ""4.5. Composing sheaves""; ""4.6. Homotopy of sheaves""; ""4.7. Finitary maps""; ""Chapter 5. Sheaves and Finitary Maps Over a Control Space""; ""5.1. Displacement function and norm""; ""5.2. Shift towards a point of M"" ""5.3. Contractions""""5.4. Guaranteed shift""; ""5.5. Defect of a sheaf""; ""Chapter 6. Construction of Sheaves with Positive Shift""; ""6.1. The case when dim X = 0""; ""6.2. Measuring the loss of guaranteed shift in an extension""; ""6.3. Imposing CAT(0)""; ""6.4. The main technical theorem""; ""Chapter 7. Controlled Connectivity as an Open Condition""; ""7.1. The topology on the set of all G-actions""; ""7.2. Continuous choice of control functions""; ""7.3. Imposing CAT(0)""; ""7.4. The Openness Theorem""; ""Chapter 8. Completion of the proofs of Theorems A and A'"" ""8.1. Controlled acyclicity""""8.2. The F[sub(n)] Criterion""; ""8.3. Proof of Theorem A""; ""8.4. Properly discontinuous actions""; ""Chapter 9. The Invariance Theorem""; ""Part 2. The geometric invariants""; ""Short summary of Part 2""; ""Chapter 10. Outline, Main Results and Examples""; ""10.1. The boundary of a CAT(0)-space""; ""10.2. CC[sup(n-1)] over end points""; ""10.3. The dynamical subset""; ""10.4. Openness results""; ""10.5. Endpoints versus points in M""; ""10.6. Fixed points and the BNSR-geometric invariant""; ""10.7. Examples"" ""Chapter 14. From CC[sup(n-1)] over Endpoints to Contractions"" |
Record Nr. | UNINA-9910807038103321 |
Bieri Robert
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|