top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arithmetic and Geometry over Local Fields [[electronic resource] ] : VIASM 2018 / / edited by Bruno Anglès, Tuan Ngo Dac
Arithmetic and Geometry over Local Fields [[electronic resource] ] : VIASM 2018 / / edited by Bruno Anglès, Tuan Ngo Dac
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XVII, 326 p. 13 illus., 2 illus. in color.)
Disciplina 512.22
Collana Lecture Notes in Mathematics
Soggetto topico Number theory
Algebraic geometry
Algebraic fields
Polynomials
Number Theory
Algebraic Geometry
Field Theory and Polynomials
Cossos algebraics
Geometria algebraica aritmètica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-66249-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466545203316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Arithmetic and Geometry over Local Fields : VIASM 2018 / / edited by Bruno Anglès, Tuan Ngo Dac
Arithmetic and Geometry over Local Fields : VIASM 2018 / / edited by Bruno Anglès, Tuan Ngo Dac
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XVII, 326 p. 13 illus., 2 illus. in color.)
Disciplina 512.22
Collana Lecture Notes in Mathematics
Soggetto topico Number theory
Algebraic geometry
Algebraic fields
Polynomials
Number Theory
Algebraic Geometry
Field Theory and Polynomials
Cossos algebraics
Geometria algebraica aritmètica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-66249-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483192103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arithmetic geometry, number theory, and computation / / edited by Jennifer S. Balakrishnan [and six others]
Arithmetic geometry, number theory, and computation / / edited by Jennifer S. Balakrishnan [and six others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (587 pages)
Disciplina 516.35
Collana Simons Symposia
Soggetto topico Number theory
Geometria algebraica aritmètica
Teoria de nombres
Soggetto genere / forma Llibres electrònics
ISBN 3-030-80914-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910552723303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arithmetic geometry, number theory, and computation / / edited by Jennifer S. Balakrishnan [and six others]
Arithmetic geometry, number theory, and computation / / edited by Jennifer S. Balakrishnan [and six others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (587 pages)
Disciplina 516.35
Collana Simons Symposia
Soggetto topico Number theory
Geometria algebraica aritmètica
Teoria de nombres
Soggetto genere / forma Llibres electrònics
ISBN 3-030-80914-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466558503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (223 pages)
Disciplina 514.24
Collana Lecture Notes in Mathematics
Soggetto topico Arithmetical algebraic geometry
Homotopy theory
Teoria de l'homotopia
Geometria algebraica aritmètica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-78977-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Homotopy Theory and Arithmetic Geometry-Motivic and Diophantine Aspects: An Introduction -- 1.1 Overview of Themes -- 1.2 Summaries of Individual Contributions -- References -- 2 An Introduction to A1-Enumerative Geometry -- 2.1 Introduction -- 2.2 Preliminaries -- 2.2.1 Enriching the Topological Degree -- 2.2.2 The Grothendieck-Witt Ring -- 2.2.3 Lannes' Formula -- 2.2.4 The Unstable Motivic Homotopy Category -- 2.2.5 Colimits -- 2.2.6 Purity -- 2.3 A1-enumerative Geometry -- 2.3.1 The Eisenbud-Khimshiashvili-Levine Signature Formula -- 2.3.2 Sketch of Proof for Theorem 4 -- 2.3.3 A1-Milnor Numbers -- 2.3.4 An Arithmetic Count of the Lines on a Smooth Cubic Surface -- 2.3.5 An Arithmetic Count of the Lines Meeting 4Lines in Space -- Notation Guide -- References -- 3 Cohomological Methods in Intersection Theory -- 3.1 Introduction -- 3.2 Étale Motives -- 3.2.1 The h-topology -- 3.2.2 Construction of Motives, After Voevodsky -- 3.2.3 Functoriality -- 3.2.4 Representability Theorems -- 3.3 Finiteness and Euler Characteristic -- 3.3.1 Locally Constructible Motives -- 3.3.2 Integrality of Traces and Rationality of ζ-Functions -- 3.3.3 Grothendieck-Verdier Duality -- 3.3.4 Generic Base Change: A Motivic Variation on Deligne's Proof -- 3.4 Characteristic Classes -- 3.4.1 Künneth Formula -- 3.4.2 Grothendieck-Lefschetz Formula -- References -- 4 Étale Homotopy and Obstructions to Rational Points -- 4.1 Introduction -- 4.2 ∞-Categories -- 4.2.1 Motivation -- 4.2.2 Quasi-Categories -- 4.2.3 ∞-Groupoids and the Homotopy Hypothesis -- 4.2.4 Quasi-Categories from Topological Categories -- 4.2.5 ∞-Category Theory -- 4.2.6 The Homotopy Category -- 4.2.7 ∞-Categories and Homological Algebra -- 4.2.8 Stable ∞-Categories -- 4.2.9 Localization -- 4.3 ∞-Topoi -- 4.3.1 Definitions -- 4.3.2 The Shape of an ∞-Topos.
4.4 Obstruction Theory -- 4.4.1 Obstruction Theory for Homotopy Types -- 4.4.2 For ∞-Topoi and Linear(ized) Versions -- 4.5 Étale Homotopy and Rational Points -- 4.5.1 The étale ∞-Topos -- 4.5.2 Rational Points -- 4.5.3 The Local-to-Global Principle -- 4.6 Galois Theory and Embedding Problems -- 4.6.1 Topoi and Embedding Problems -- References -- 5 A1-homotopy Theory and Contractible Varieties: A Survey -- 5.1 Introduction: Topological and Algebro-Geometric Motivations -- 5.1.1 Open Contractible Manifolds -- 5.1.2 Contractible Algebraic Varieties -- 5.2 A User's Guide to A1-homotopy Theory -- 5.2.1 Brief Topological Motivation -- 5.2.2 Homotopy Functors in Algebraic Geometry -- 5.2.3 The Unstable A1-homotopy Category: Construction -- Spaces -- Nisnevich and cdh Distinguished Squares -- Localization -- 5.2.4 The Unstable A1-homotopy Category: Basic Properties -- Motivic Spheres -- Representability Statements -- Representability of Chow Groups -- The Purity Isomorphism -- Comparison of Nisnevich and cdh-local A1-weak Equivalences -- 5.2.5 A Snapshot of the Stable Motivic Homotopy Category -- Stable Representablity of Algebraic K-theory -- Milnor-Witt K-theory -- 5.3 Concrete A1-weak Equivalences -- 5.3.1 Constructing A1-weak Equivalences of Smooth Schemes -- 5.3.2 A1-weak Equivalences vs. Weak Equivalences -- 5.3.3 Cancellation Questions and A1-weak Equivalences -- 5.3.4 Danielewski Surfaces and Generalizations -- 5.3.5 Building Quasi-Affine A1-contractible Varieties -- Unipotent Quotients -- Other Quasi-Affine A1-contractible Varieties -- 5.4 Further Computations in A1-homotopy Theory -- 5.4.1 A1-homotopy Sheaves -- Basic Definitions -- A1-rigid Varieties Embed into H(k) -- 5.4.2 A1-connectedness and Geometry -- A1-connectedness and Rationality Properties -- 5.4.3 A1-homotopy Sheaves Spheres and Brouwer Degree -- 5.4.4 A1-homotopy at Infinity.
One-point Compactifications -- Stable End Spaces -- 5.5 Cancellation Questions and A1-contractibility -- 5.5.1 The Biregular Cancellation Problem -- 5.5.2 A1-contractibility vs Topological Contractibility -- Affine Lines on Topologically Contractible Surfaces -- Chow Groups and Vector Bundles on Topologically Contractible Surfaces -- 5.5.3 Cancellation Problems and the Russell Cubic -- The Russell Cubic and Equivariant K-theory -- Higher Chow Groups and Stable A1-contractibility -- 5.5.4 A1-contractibility of the Koras-Russell Threefold -- 5.5.5 Koras-Russell Fiber Bundles -- References -- Index.
Record Nr. UNISA-996466408503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (223 pages)
Disciplina 514.24
Collana Lecture Notes in Mathematics
Soggetto topico Arithmetical algebraic geometry
Homotopy theory
Teoria de l'homotopia
Geometria algebraica aritmètica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-78977-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Homotopy Theory and Arithmetic Geometry-Motivic and Diophantine Aspects: An Introduction -- 1.1 Overview of Themes -- 1.2 Summaries of Individual Contributions -- References -- 2 An Introduction to A1-Enumerative Geometry -- 2.1 Introduction -- 2.2 Preliminaries -- 2.2.1 Enriching the Topological Degree -- 2.2.2 The Grothendieck-Witt Ring -- 2.2.3 Lannes' Formula -- 2.2.4 The Unstable Motivic Homotopy Category -- 2.2.5 Colimits -- 2.2.6 Purity -- 2.3 A1-enumerative Geometry -- 2.3.1 The Eisenbud-Khimshiashvili-Levine Signature Formula -- 2.3.2 Sketch of Proof for Theorem 4 -- 2.3.3 A1-Milnor Numbers -- 2.3.4 An Arithmetic Count of the Lines on a Smooth Cubic Surface -- 2.3.5 An Arithmetic Count of the Lines Meeting 4Lines in Space -- Notation Guide -- References -- 3 Cohomological Methods in Intersection Theory -- 3.1 Introduction -- 3.2 Étale Motives -- 3.2.1 The h-topology -- 3.2.2 Construction of Motives, After Voevodsky -- 3.2.3 Functoriality -- 3.2.4 Representability Theorems -- 3.3 Finiteness and Euler Characteristic -- 3.3.1 Locally Constructible Motives -- 3.3.2 Integrality of Traces and Rationality of ζ-Functions -- 3.3.3 Grothendieck-Verdier Duality -- 3.3.4 Generic Base Change: A Motivic Variation on Deligne's Proof -- 3.4 Characteristic Classes -- 3.4.1 Künneth Formula -- 3.4.2 Grothendieck-Lefschetz Formula -- References -- 4 Étale Homotopy and Obstructions to Rational Points -- 4.1 Introduction -- 4.2 ∞-Categories -- 4.2.1 Motivation -- 4.2.2 Quasi-Categories -- 4.2.3 ∞-Groupoids and the Homotopy Hypothesis -- 4.2.4 Quasi-Categories from Topological Categories -- 4.2.5 ∞-Category Theory -- 4.2.6 The Homotopy Category -- 4.2.7 ∞-Categories and Homological Algebra -- 4.2.8 Stable ∞-Categories -- 4.2.9 Localization -- 4.3 ∞-Topoi -- 4.3.1 Definitions -- 4.3.2 The Shape of an ∞-Topos.
4.4 Obstruction Theory -- 4.4.1 Obstruction Theory for Homotopy Types -- 4.4.2 For ∞-Topoi and Linear(ized) Versions -- 4.5 Étale Homotopy and Rational Points -- 4.5.1 The étale ∞-Topos -- 4.5.2 Rational Points -- 4.5.3 The Local-to-Global Principle -- 4.6 Galois Theory and Embedding Problems -- 4.6.1 Topoi and Embedding Problems -- References -- 5 A1-homotopy Theory and Contractible Varieties: A Survey -- 5.1 Introduction: Topological and Algebro-Geometric Motivations -- 5.1.1 Open Contractible Manifolds -- 5.1.2 Contractible Algebraic Varieties -- 5.2 A User's Guide to A1-homotopy Theory -- 5.2.1 Brief Topological Motivation -- 5.2.2 Homotopy Functors in Algebraic Geometry -- 5.2.3 The Unstable A1-homotopy Category: Construction -- Spaces -- Nisnevich and cdh Distinguished Squares -- Localization -- 5.2.4 The Unstable A1-homotopy Category: Basic Properties -- Motivic Spheres -- Representability Statements -- Representability of Chow Groups -- The Purity Isomorphism -- Comparison of Nisnevich and cdh-local A1-weak Equivalences -- 5.2.5 A Snapshot of the Stable Motivic Homotopy Category -- Stable Representablity of Algebraic K-theory -- Milnor-Witt K-theory -- 5.3 Concrete A1-weak Equivalences -- 5.3.1 Constructing A1-weak Equivalences of Smooth Schemes -- 5.3.2 A1-weak Equivalences vs. Weak Equivalences -- 5.3.3 Cancellation Questions and A1-weak Equivalences -- 5.3.4 Danielewski Surfaces and Generalizations -- 5.3.5 Building Quasi-Affine A1-contractible Varieties -- Unipotent Quotients -- Other Quasi-Affine A1-contractible Varieties -- 5.4 Further Computations in A1-homotopy Theory -- 5.4.1 A1-homotopy Sheaves -- Basic Definitions -- A1-rigid Varieties Embed into H(k) -- 5.4.2 A1-connectedness and Geometry -- A1-connectedness and Rationality Properties -- 5.4.3 A1-homotopy Sheaves Spheres and Brouwer Degree -- 5.4.4 A1-homotopy at Infinity.
One-point Compactifications -- Stable End Spaces -- 5.5 Cancellation Questions and A1-contractibility -- 5.5.1 The Biregular Cancellation Problem -- 5.5.2 A1-contractibility vs Topological Contractibility -- Affine Lines on Topologically Contractible Surfaces -- Chow Groups and Vector Bundles on Topologically Contractible Surfaces -- 5.5.3 Cancellation Problems and the Russell Cubic -- The Russell Cubic and Equivariant K-theory -- Higher Chow Groups and Stable A1-contractibility -- 5.5.4 A1-contractibility of the Koras-Russell Threefold -- 5.5.5 Koras-Russell Fiber Bundles -- References -- Index.
Record Nr. UNINA-9910502651603321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui