Geometry of the generalized geodesic flow and inverse spectral problems / / Vesselin M. Petkov, Luchezar N. Stoyanov
| Geometry of the generalized geodesic flow and inverse spectral problems / / Vesselin M. Petkov, Luchezar N. Stoyanov |
| Autore | Petkov Vesselin M. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2017 |
| Descrizione fisica | 1 online resource (429 pages) : illustrations, graphs, tables |
| Disciplina | 515/.7222 |
| Soggetto topico |
Spectral theory (Mathematics)
Inverse problems (Differential equations) Geometry, Differential Geodesic flows Flows (Differentiable dynamical systems) |
| ISBN |
1-119-10769-5
1-119-10767-9 1-119-10768-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910166639003321 |
Petkov Vesselin M.
|
||
| Chichester, England : , : Wiley, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometry of the generalized geodesic flow and inverse spectral problems / / Vesselin M. Petkov, Luchezar N. Stoyanov
| Geometry of the generalized geodesic flow and inverse spectral problems / / Vesselin M. Petkov, Luchezar N. Stoyanov |
| Autore | Petkov Vesselin M. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2017 |
| Descrizione fisica | 1 online resource (429 pages) : illustrations, graphs, tables |
| Disciplina | 515/.7222 |
| Soggetto topico |
Spectral theory (Mathematics)
Inverse problems (Differential equations) Geometry, Differential Geodesic flows Flows (Differentiable dynamical systems) |
| ISBN |
1-119-10769-5
1-119-10767-9 1-119-10768-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830657203321 |
Petkov Vesselin M.
|
||
| Chichester, England : , : Wiley, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Integrable geodesic flows on two-dimensional surfaces / A. V. Bolsinov and A. T. Fomenko
| Integrable geodesic flows on two-dimensional surfaces / A. V. Bolsinov and A. T. Fomenko |
| Autore | Bolsinov, A. V. |
| Pubbl/distr/stampa | New York : Consultants Bureau, c2000 |
| Descrizione fisica | xiii, 322 p. : ill. ; 26 cm |
| Disciplina | 514.74 |
| Altri autori (Persone) | Fomenko, A. T. |
| Collana | Monographs in contemporary mathematics |
| Soggetto topico | Geodesic flows |
| ISBN | 0306110652 |
| Classificazione |
AMS 37E
AMS 37J AMS 70E AMS 70H LC QA614.82.B6513 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003685179707536 |
Bolsinov, A. V.
|
||
| New York : Consultants Bureau, c2000 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Integrable Hamiltonian systems : geometry, topology, classification / A. V. Bolsinov and A. T. Fomenko
| Integrable Hamiltonian systems : geometry, topology, classification / A. V. Bolsinov and A. T. Fomenko |
| Autore | Bolsinov, Aleksei Viktorovich |
| Pubbl/distr/stampa | Boca Raton, Florida : Chapman & Hall/CRC, c2004 |
| Descrizione fisica | xv, 730 p. : ill. ; 24 cm |
| Disciplina | 515.39 |
| Altri autori (Persone) | Fomenko, A. T. |
| Soggetto topico |
Hamiltonian systems
Geodesic flows Geodesics (Mathematics) |
| ISBN | 0415298059 |
| Classificazione |
AMS 37J35
LC QA614.83.B6413 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNISALENTO-991000540889707536 |
Bolsinov, Aleksei Viktorovich
|
||
| Boca Raton, Florida : Chapman & Hall/CRC, c2004 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The Regularity of the Linear Drift in Negatively Curved Spaces
| The Regularity of the Linear Drift in Negatively Curved Spaces |
| Autore | Ledrappier François |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2023 |
| Descrizione fisica | 1 online resource (164 pages) |
| Disciplina |
515/.39
516.352 |
| Altri autori (Persone) | ShuLin |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Stochastic analysis Brownian motion processes Dynamical systems and ergodic theory -- Dynamical systems with hyperbolic behavior -- Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Diffusion processes and stochastic analysis on manifolds |
| ISBN | 1-4704-7320-8 |
| Classificazione | 37D4058J65 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover -- Title page -- Chapter 1. Introduction and statement of results -- Main notations and conventions -- Chapter 2. Preliminaries -- 2.1. Jacobi fields and the geodesic flow -- 2.2. Anosov flow and invariant manifolds -- 2.3. Harmonic measure for the stable foliation -- 2.4. Busemann function and the linear drift -- Chapter 3. Regularity of the linear drift -- 3.1. Regularity of the leafwise divergence term ^{ }\overline{ } -- 3.2. Regularity of the harmonic measure -- 3.3. Differentials of the linear drift -- Chapter 4. Brownian motion and stochastic flows -- 4.1. Parallelism and the Brownian motion -- 4.2. A stochastic analogue of the geodesic flow -- 4.3. Growth of the stochastic tangent maps in time -- 4.4. Brownian bridge and conditional estimations -- 4.5. Regularity of the stochastic analogue of the geodesic flow -- Chapter 5. The first differential of the heat kernels in metrics -- 5.1. Strategy -- 5.2. A description of _{ }^{ } -- 5.3. The existence of ^{ }_{ } -- 5.4. Quasi-invariance property of _{ }^{ } -- 5.5. The extended map ^{ } -- 5.6. The differential of \mapsto ^{ }( , ,⋅) -- Chapter 6. Higher order regularity of the heat kernels in metrics -- 6.1. A sketch of the proof for Theorem 1.3 with ≥2 -- 6.2. Proofs of the properties concerning ^{ }_{ } -- Chapter 7. Regularity of the stochastic entropy -- Acknowledgments -- Bibliography -- Back Cover. |
| Record Nr. | UNINA-9910915676103321 |
Ledrappier François
|
||
| Providence : , : American Mathematical Society, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910480997503321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910788733203321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910811889403321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||