top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Plant Microbiome and Sustainable Agriculture : Diversity and Biotechnological Applications / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Advances in Plant Microbiome and Sustainable Agriculture : Diversity and Biotechnological Applications / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXIII, 296 p. 36 illus., 28 illus. in color.)
Disciplina 579.178
Collana Microorganisms for Sustainability
Soggetto topico Agriculture
Plant breeding
Microbial ecology
Microbial genetics
Microbial genomics
Genètica vegetal
Agricultura sostenible
Genètica microbiana
Plant Breeding/Biotechnology
Microbial Ecology
Microbial Genetics and Genomics
Soggetto genere / forma Llibres electrònics
ISBN 981-15-3208-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Plant-Microbes Interaction: Current Developments and Future Challenges -- Chapter 2. Rhizospheric Microbiomes: Biodiversity, Current Advancement, and Potential Biotechnological Application -- Chapter 3. Endophytic Microbiomes: Biodiversity, Current Status, and Potential Agricultural Applications -- Chapter 4. Culturable Plant-Associated Endophytic Microbial Communities from Leguminous and Non-Leguminous Crops -- Chapter 5. Arbuscular Mycorrhizal Fungi: Abundance, Interaction with Plants and Potential Biological Application -- Chapter 6. Endophytic Microbiomes and their Plant Growth Promoting Attributes for Plant Health -- Chapter 7. Diversity and Biotechnological Potential of Culturable Rhizospheric Actinomicrobiota -- Chapter 8. Bacillus and Endomicrobiome: Biodiversity and potential Applications in Agriculture -- Chapter 9. Role of Microbes in Improving Plant Growth and Soil Health for Sustainable Agriculture -- Chapter 10. Biofertilizers and Biopesticides: Microbes for Sustainable Agriculture.
Record Nr. UNINA-9910416104403321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Plant Microbiome and Sustainable Agriculture : Functional Annotation and Future Challenges / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Advances in Plant Microbiome and Sustainable Agriculture : Functional Annotation and Future Challenges / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXII, 278 p. 31 illus., 29 illus. in color.)
Disciplina 306.4409113
Collana Microorganisms for Sustainability
Soggetto topico Agriculture
Microbial ecology
Microbial genetics
Microbial genomics
Plant breeding
Genètica vegetal
Genètica microbiana
Agricultura sostenible
Microbial Ecology
Microbial Genetics and Genomics
Plant Breeding/Biotechnology
Soggetto genere / forma Llibres electrònics
ISBN 981-15-3204-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Phosphorus Solubilization and Mobilization: Mechanisms, Current Developments and Future Challenge -- Chapter 2. Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture -- Chapter 3. Zinc Solubilization and Mobilization: A Promising Approach for Cereals Biofortification -- Chapter 4. Microbial ACC-deaminase attributes: perspectives and applications in stress agriculture -- Chapter 5. Plant Microbiomes with Phytohormones Attribute for Plant Growth and Adaptation under the Stress Conditions -- Chapter 6. Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress -- Chapter 7. Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress -- Chapter 8. Alleviation of Cold Stress by Psychrotrophic Microbes -- Chapter 9. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges -- Chapter 10. Microbial Consortium with Multifunctional Plant Growth Promoting Attributes: Future Perspective in Agriculture -- Chapter 11. Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges.
Record Nr. UNINA-9910416102803321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fungal Biotechnology and Bioengineering / / edited by Abd El-Latif Hesham, Ram Sanmukh Upadhyay, Gauri Dutt Sharma, Chakravarthula Manoharachary, Vijai Kumar Gupta
Fungal Biotechnology and Bioengineering / / edited by Abd El-Latif Hesham, Ram Sanmukh Upadhyay, Gauri Dutt Sharma, Chakravarthula Manoharachary, Vijai Kumar Gupta
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (493 pages)
Disciplina 660.62
Collana Fungal Biology
Soggetto topico Mycology
Plant breeding
Microbial genetics
Microbial genomics
Botanical chemistry
Plant Breeding/Biotechnology
Microbial Genetics and Genomics
Plant Biochemistry
Biotecnologia agrícola
Bioenginyeria
Genètica microbiana
Soggetto genere / forma Llibres electrònics
ISBN 3-030-41870-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Fungal Epigenetic Engineering -- Yeast engineering for new antifungal compounds: a contextualized overview -- G protein-coupled receptors in fungi -- Prompt and convenient preparation of oral vaccines using yeast cell surface display -- Trichoderma a factory of multipurpose enzymes -- Advances genomic approaches for mining fungal genes for biofuels -- Genetically modified fungi for second generation bioethanol production -- Fungal Bioengineering in Biodiesel Production -- Bioengineering fungi and yeast for the production of enzymes, metabolites and value-added compounds -- Fungal production of prebiotics -- Fermentative production of secondary metabolites from Bioengineered Fungi and their applications -- Recent progress on Trichoderma secondary metabolites -- Fungal genes encoding enzymes that are used in cheese production and fermentation industries -- Unravelling the potentials of endophytes and its applications -- Fungal genes and gene products involved in wastewater treatments -- DNA Barcode for Species Identification in Fungi -- Current progress on endophytic microbial dynamics on Dendrobium plants.-Understanding its role bioengineered Trichoderma in managing soil-borne plant diseases and its other benefits -- Beyond classical biocontrol: new perspectives on Trichoderma -- Systemic acquired resistance (SAR) and Induced systemic resistance (ISR) mechanism of Trichoderma against pathogens -- Index.
Record Nr. UNINA-9910409683003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microbial Genomics in Sustainable Agroecosystems : Volume 1 / / edited by Vijay Tripathi, Pradeep Kumar, Pooja Tripathi, Amit Kishore
Microbial Genomics in Sustainable Agroecosystems : Volume 1 / / edited by Vijay Tripathi, Pradeep Kumar, Pooja Tripathi, Amit Kishore
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIV, 285 p. 33 illus., 27 illus. in color.)
Disciplina 579.135
Soggetto topico Microbial genetics
Microbial genomics
Sustainable development
Microbial ecology
Agriculture
Biotic communities
Microbial Genetics and Genomics
Sustainable Development
Microbial Ecology
Ecosystems
Genètica microbiana
Soggetto genere / forma Llibres electrònics
ISBN 981-13-8739-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Functional genomics and System biology approach in bioremediation of soil and water from organic and inorganic pollutants -- 2. Mycorrhiza and plant disease control -- 3. Mycovirus and the genome of plant fungi pathogen -- 4. Bacterial Pan-genomics -- 5. Phyllosphere and its potential role in sustainable agriculture -- 6. Functional genomics and systems biology approach for understanding Agroecosystems -- 7. Advancements in Microbial Genome Sequencing and Microbial Community Characterization -- 8. Bioinformatics and microarray-based technologies to Viral genome sequence analysis -- 9. Application of whole genome sequencing (WGS) approach against identification of foodborne bacteria -- 10. Functional metagenomics for rhizospheric soil in agricultural systems -- 11. Microbial genomics in carbon management and energy production -- 12. Microbial genome diversity and microbial genome sequencing -- 13. Molecular Techniques for the Identification and Genotyping of Microorganisms -- 14. RNA-guided CRISPR-Cas9 System for Removal of Microbial Pathogens -- 15. Biosorption-cum-bioaccumulation of heavy metals from industrial effluent by brown algae-Deep insight -- 16. Linking microbial genomics to renewable energy production and global carbon management.
Record Nr. UNINA-9910373919603321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical analysis of microbiome data / / Somnath Datta and Subharup Guha, editors
Statistical analysis of microbiome data / / Somnath Datta and Subharup Guha, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (348 pages)
Disciplina 579
Collana Frontiers in probability and the statistical sciences
Soggetto topico Microbiology - Statistical methods
Microbiologia
Estadística matemàtica
Microorganismes
Genètica microbiana
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73351-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Part I Preprocessing and Bioinformatics Pipelines -- Denoising Methods for Inferring Microbiome Community Content and Abundance -- 1 Introduction -- 2 Common Algorithmic Denoising Strategies -- 3 Model-Based Denoising -- 3.1 Hierarchical Divisive Clustering -- 3.2 Finite Mixture Model -- 3.3 Denoising Long-Read Technology -- 4 Model Assessment -- 4.1 With Known Truth -- 4.1.1 Accuracy in ASV Identification -- 4.1.2 Accuracy in Read Assignments -- 4.2 With Unknown Truth -- 4.2.1 Assessment with UMIs -- 4.2.2 Clustering Stability -- 5 Conclusions -- References -- Statistical and Computational Methods for Analysis of Shotgun Metagenomics Sequencing Data -- 1 Introduction -- 2 Methods for Species Identification and Quantification of Microorganisms -- 3 Metagenome Assembly and Applications -- 3.1 de Bruijn Assembly of a Single Genome -- 3.2 Modification for Metagenome and Metagenome-Assembled Genomes -- 3.3 Compacted de Bruijn Graph -- 4 Estimation of Growth Rates for Metagenome-Assembled Genomes (MAGs) -- 5 Methods for Identifying Biosynthetic Gene Clusters -- 5.1 A Hidden Markov Model-Based Approach -- 5.2 A Deep Learning Approach -- 5.3 BGC Identification Based on Metagenomic Data -- 6 Future Directions -- References -- Bioinformatics Pre-Processing of Microbiome Data with An Application to Metagenomic Forensics -- 1 Introduction -- 2 Bioinformatics Pipeline -- 2.1 Microbiome Data -- 2.2 Quality Control -- 2.3 Taxonomic Profiling -- 2.3.1 MetaPhlAn2 -- 2.3.2 Kraken2 -- 2.3.3 Kaiju -- 2.4 Computing facilities -- 3 Methodology -- 3.1 Pre-Processing and Feature Selection -- 3.2 Exploration of Candidate Classifiers -- 3.3 The Ensemble Classifier -- 3.4 Class Imbalance -- 3.5 Performance Measures -- 3.6 Data Analysis -- 4 Results -- 5 Discussion -- 6 Data Acknowledgement -- 7 Code Availability.
References -- Part II Exploratory Analyses of Microbial Communities -- Statistical Methods for Pairwise Comparison of Metagenomic Samples -- 1 Introduction -- 2 Microbial Community Comparison Methods Based on OTU Abundance Data -- 3 Microbial Community Comparison Measures Based on a Phylogenetic Tree -- 3.1 The Fst Statistic and Phylogenetic Test for Comparing Communities -- 3.2 UniFrac, W-UniFrac, VAW-UniFrac, and Generalized UniFrac for Comparing Microbial Communities -- 3.3 VAW-UniFrac for Comparing Communities -- 4 Alignment-Free Methods for the Comparison of Microbial Communities -- 5 A Tutorial on the Use of UniFrac Type and Alignment-Free Dissimilarity Measures for the Comparison of Metagenomic Samples -- 5.1 Analysis Steps for UniFrac, W-UniFrac, Generalized UniFrac, and VAW-UniFrac -- 5.2 Analysis Steps for the Comparison of Microbial Communities Based on Alignment-Free Methods -- 6 Discussion -- References -- Beta Diversity and Distance-Based Analysis of Microbiome Data -- 1 Introduction -- 2 Quantifying Dissimilarity: Common Beta Diversity Metrics -- 3 Ordination and Dimension Reduction -- 3.1 Principal Coordinates Analysis -- 3.2 Double Principal Coordinate Analysis -- 3.3 Biplots -- 3.4 Accounting for Compositionality -- 3.5 Model-Based Ordination Using Latent Variables -- 4 Distance-Based Hypothesis Testing -- 4.1 Permutation Tests -- 4.2 Kernel Machine Regression Tests -- 4.3 Sum of Powered Score Tests -- 4.4 Adaptive Tests -- 4.5 Comparison of Distance-Based Tests -- 5 Strengths, Weaknesses, and Future Directions -- References -- Part III Statistical Models and Inference -- Joint Models for Repeatedly Measured Compositional and Normally Distributed Outcomes -- 1 Introduction -- 2 Motivating Data -- 3 Statistical Models -- 3.1 The Multinomial Logistic Mixed Model (MLMM) -- 3.2 Dirichlet-Multinomial Mixed Model (DMMM).
3.3 Goodness of Fit -- 4 Simulation Studies -- 4.1 Simulation Setting -- 4.2 Simulation Results -- 5 Data Analysis -- 6 Discussion -- 7 Software -- Appendix -- References -- Statistical Methods for Feature Identification in Microbiome Studies -- 1 Introduction -- 2 Differential Abundance Analysis -- 2.1 Compositional Methods -- 2.2 Count-Based Methods -- 2.3 Additional Notes -- 3 Mediation Analysis -- 4 Feature Identification Adjusting for Confounding -- 4.1 Covariate Adjustment -- 4.2 Model-Based Standardization -- 5 Summary -- References -- Statistical Methods for Analyzing Tree-Structured Microbiome Data -- 1 Introduction -- 2 Modeling Multivariate Count Data -- 2.1 Dirichlet-Multinomial Model -- 2.2 Dirichlet-Tree Multinomial Model -- 2.3 Implementation and Illustration -- 3 Estimating Microbial Compositions -- 3.1 Empirical Bayes Normalization -- 3.2 Phylogeny-Aware Normalization -- 3.3 Statistical Analysis of Compositional Data -- 3.4 Implementation and Illustration -- 4 Regression with Compositional Predictors -- 4.1 Constrained Lasso and Log-Ratio Lasso -- 4.2 Subcomposition Selection -- 4.3 Phylogeny-Aware Subcomposition Selection -- 4.4 Linear Regression and Variable Fusion -- 5 Additional References -- 6 Discussion -- References -- A Log-Linear Model for Inference on Bias in Microbiome Studies -- 1 Introduction -- 2 Methods -- 2.1 The Brooks' Data -- 2.2 Setup and Estimation -- 2.3 Inference -- 2.4 Testability of the Hypothesis -- 2.4.1 Example: Testable Hypotheses for Main Effects -- 2.4.2 Example: Testable Hypotheses for Interaction Effects -- 3 Simulations -- 3.1 Main Effect Simulation -- 3.2 Interaction Effect Simulation Based on the Brooks Data -- 4 Results -- 4.1 Simulation Results -- 4.2 Do Interactions Between Taxa Affect Bias in the Brooks' Data? -- 4.3 Plate and Sample Type Effects in the Brooks' Data -- 5 Discussion -- Appendix.
References -- Part IV Bayesian Methods -- Dirichlet-Multinomial Regression Models with Bayesian Variable Selection for Microbiome Data -- 1 Introduction -- 2 Methods -- 2.1 Dirichlet-Multinomial Regression Models for Compositional Data -- 2.2 Variable Selection Priors -- 2.3 Network Priors -- 2.3.1 Unknown G -- 2.4 Dirichlet-Tree Multinomial Models -- 2.5 Posterior Inference -- 3 Simulated Data -- 3.1 Simulation Study for DM Regression Models -- 3.2 DM Sensitivity Analysis -- 3.3 Simulation Study for DTM Regression Models -- 3.4 DTM Sensitivity Analysis -- 4 Applications -- 4.1 Multi-omics Microbiome Study-Pregnancy Initiative (MOMS-PI) -- 4.2 Gut Microbiome Study -- 5 Conclusion -- References -- A Bayesian Approach to Restoring the Duality Between Principal Components of a Distance Matrix and Operational Taxonomic Units in Microbiome Analyses -- 1 Introduction -- 1.1 Motivating Datasets -- 1.2 Nonlinear or Stochastic Distances -- 1.3 Limitations of SVD-Based Approaches -- 2 A Bayesian Formulation -- 2.1 Posterior Density -- 3 Model Sum of Squares and Biplots -- 4 Posterior Inference -- 4.1 Gibbs Sampler -- 4.2 Dimension Reduction: Skinny Bayesian Technique -- 4.2.1 Subsetted Data Matrix -- 4.2.2 Lower Dimensional Parameters and Induced Posterior -- 4.2.3 Faster Inference Procedure -- 4.3 Model Parameter Estimates -- 5 Simulation Study -- 5.1 Generation Strategy -- 6 Data Analysis -- 6.1 Tobacco Data -- 6.2 Subway Data -- 7 Data Acknowledgement -- 8 Discussion -- Supplementary Materials -- Appendix -- Proof of Lemma 1 -- References -- Part V Special Topics -- Tree Variable Selection for Paired Case-Control Studies with Application to Microbiome Data -- 1 Introduction -- 2 Gini Index -- 2.1 Simulation Analysis -- 3 Multivariate Gini Index -- 3.1 Conditional Gini Index -- 4 Variable Importance -- 5 Analysis of Obesity Using Microbiome Data.
6 Discussion -- Appendix -- References -- Networks for Compositional Data -- 1 Introduction -- 2 Methods -- 2.1 Learning Networks from Marginal Associations -- 2.1.1 ReBoot -- 2.1.2 SparCC -- 2.1.3 CCLasso -- 2.1.4 COAT -- 2.2 Learning Networks from Conditional Associations -- 2.2.1 SPIEC-EASI -- 2.2.2 gCoda -- 2.2.3 SPRING -- 3 Data-Generating Models -- 3.1 Null Models -- 3.2 Copula Models -- 3.3 Logistic-Normal Model -- 4 Results -- 4.1 Spurious (Partial) Correlations -- 4.2 Performance in Network Discovery -- 4.3 Case Studies in R -- 5 Future Directions -- References -- Index.
Record Nr. UNINA-9910508445803321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical analysis of microbiome data / / Somnath Datta and Subharup Guha, editors
Statistical analysis of microbiome data / / Somnath Datta and Subharup Guha, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (348 pages)
Disciplina 579
Collana Frontiers in probability and the statistical sciences
Soggetto topico Microbiology - Statistical methods
Microbiologia
Estadística matemàtica
Microorganismes
Genètica microbiana
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73351-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Part I Preprocessing and Bioinformatics Pipelines -- Denoising Methods for Inferring Microbiome Community Content and Abundance -- 1 Introduction -- 2 Common Algorithmic Denoising Strategies -- 3 Model-Based Denoising -- 3.1 Hierarchical Divisive Clustering -- 3.2 Finite Mixture Model -- 3.3 Denoising Long-Read Technology -- 4 Model Assessment -- 4.1 With Known Truth -- 4.1.1 Accuracy in ASV Identification -- 4.1.2 Accuracy in Read Assignments -- 4.2 With Unknown Truth -- 4.2.1 Assessment with UMIs -- 4.2.2 Clustering Stability -- 5 Conclusions -- References -- Statistical and Computational Methods for Analysis of Shotgun Metagenomics Sequencing Data -- 1 Introduction -- 2 Methods for Species Identification and Quantification of Microorganisms -- 3 Metagenome Assembly and Applications -- 3.1 de Bruijn Assembly of a Single Genome -- 3.2 Modification for Metagenome and Metagenome-Assembled Genomes -- 3.3 Compacted de Bruijn Graph -- 4 Estimation of Growth Rates for Metagenome-Assembled Genomes (MAGs) -- 5 Methods for Identifying Biosynthetic Gene Clusters -- 5.1 A Hidden Markov Model-Based Approach -- 5.2 A Deep Learning Approach -- 5.3 BGC Identification Based on Metagenomic Data -- 6 Future Directions -- References -- Bioinformatics Pre-Processing of Microbiome Data with An Application to Metagenomic Forensics -- 1 Introduction -- 2 Bioinformatics Pipeline -- 2.1 Microbiome Data -- 2.2 Quality Control -- 2.3 Taxonomic Profiling -- 2.3.1 MetaPhlAn2 -- 2.3.2 Kraken2 -- 2.3.3 Kaiju -- 2.4 Computing facilities -- 3 Methodology -- 3.1 Pre-Processing and Feature Selection -- 3.2 Exploration of Candidate Classifiers -- 3.3 The Ensemble Classifier -- 3.4 Class Imbalance -- 3.5 Performance Measures -- 3.6 Data Analysis -- 4 Results -- 5 Discussion -- 6 Data Acknowledgement -- 7 Code Availability.
References -- Part II Exploratory Analyses of Microbial Communities -- Statistical Methods for Pairwise Comparison of Metagenomic Samples -- 1 Introduction -- 2 Microbial Community Comparison Methods Based on OTU Abundance Data -- 3 Microbial Community Comparison Measures Based on a Phylogenetic Tree -- 3.1 The Fst Statistic and Phylogenetic Test for Comparing Communities -- 3.2 UniFrac, W-UniFrac, VAW-UniFrac, and Generalized UniFrac for Comparing Microbial Communities -- 3.3 VAW-UniFrac for Comparing Communities -- 4 Alignment-Free Methods for the Comparison of Microbial Communities -- 5 A Tutorial on the Use of UniFrac Type and Alignment-Free Dissimilarity Measures for the Comparison of Metagenomic Samples -- 5.1 Analysis Steps for UniFrac, W-UniFrac, Generalized UniFrac, and VAW-UniFrac -- 5.2 Analysis Steps for the Comparison of Microbial Communities Based on Alignment-Free Methods -- 6 Discussion -- References -- Beta Diversity and Distance-Based Analysis of Microbiome Data -- 1 Introduction -- 2 Quantifying Dissimilarity: Common Beta Diversity Metrics -- 3 Ordination and Dimension Reduction -- 3.1 Principal Coordinates Analysis -- 3.2 Double Principal Coordinate Analysis -- 3.3 Biplots -- 3.4 Accounting for Compositionality -- 3.5 Model-Based Ordination Using Latent Variables -- 4 Distance-Based Hypothesis Testing -- 4.1 Permutation Tests -- 4.2 Kernel Machine Regression Tests -- 4.3 Sum of Powered Score Tests -- 4.4 Adaptive Tests -- 4.5 Comparison of Distance-Based Tests -- 5 Strengths, Weaknesses, and Future Directions -- References -- Part III Statistical Models and Inference -- Joint Models for Repeatedly Measured Compositional and Normally Distributed Outcomes -- 1 Introduction -- 2 Motivating Data -- 3 Statistical Models -- 3.1 The Multinomial Logistic Mixed Model (MLMM) -- 3.2 Dirichlet-Multinomial Mixed Model (DMMM).
3.3 Goodness of Fit -- 4 Simulation Studies -- 4.1 Simulation Setting -- 4.2 Simulation Results -- 5 Data Analysis -- 6 Discussion -- 7 Software -- Appendix -- References -- Statistical Methods for Feature Identification in Microbiome Studies -- 1 Introduction -- 2 Differential Abundance Analysis -- 2.1 Compositional Methods -- 2.2 Count-Based Methods -- 2.3 Additional Notes -- 3 Mediation Analysis -- 4 Feature Identification Adjusting for Confounding -- 4.1 Covariate Adjustment -- 4.2 Model-Based Standardization -- 5 Summary -- References -- Statistical Methods for Analyzing Tree-Structured Microbiome Data -- 1 Introduction -- 2 Modeling Multivariate Count Data -- 2.1 Dirichlet-Multinomial Model -- 2.2 Dirichlet-Tree Multinomial Model -- 2.3 Implementation and Illustration -- 3 Estimating Microbial Compositions -- 3.1 Empirical Bayes Normalization -- 3.2 Phylogeny-Aware Normalization -- 3.3 Statistical Analysis of Compositional Data -- 3.4 Implementation and Illustration -- 4 Regression with Compositional Predictors -- 4.1 Constrained Lasso and Log-Ratio Lasso -- 4.2 Subcomposition Selection -- 4.3 Phylogeny-Aware Subcomposition Selection -- 4.4 Linear Regression and Variable Fusion -- 5 Additional References -- 6 Discussion -- References -- A Log-Linear Model for Inference on Bias in Microbiome Studies -- 1 Introduction -- 2 Methods -- 2.1 The Brooks' Data -- 2.2 Setup and Estimation -- 2.3 Inference -- 2.4 Testability of the Hypothesis -- 2.4.1 Example: Testable Hypotheses for Main Effects -- 2.4.2 Example: Testable Hypotheses for Interaction Effects -- 3 Simulations -- 3.1 Main Effect Simulation -- 3.2 Interaction Effect Simulation Based on the Brooks Data -- 4 Results -- 4.1 Simulation Results -- 4.2 Do Interactions Between Taxa Affect Bias in the Brooks' Data? -- 4.3 Plate and Sample Type Effects in the Brooks' Data -- 5 Discussion -- Appendix.
References -- Part IV Bayesian Methods -- Dirichlet-Multinomial Regression Models with Bayesian Variable Selection for Microbiome Data -- 1 Introduction -- 2 Methods -- 2.1 Dirichlet-Multinomial Regression Models for Compositional Data -- 2.2 Variable Selection Priors -- 2.3 Network Priors -- 2.3.1 Unknown G -- 2.4 Dirichlet-Tree Multinomial Models -- 2.5 Posterior Inference -- 3 Simulated Data -- 3.1 Simulation Study for DM Regression Models -- 3.2 DM Sensitivity Analysis -- 3.3 Simulation Study for DTM Regression Models -- 3.4 DTM Sensitivity Analysis -- 4 Applications -- 4.1 Multi-omics Microbiome Study-Pregnancy Initiative (MOMS-PI) -- 4.2 Gut Microbiome Study -- 5 Conclusion -- References -- A Bayesian Approach to Restoring the Duality Between Principal Components of a Distance Matrix and Operational Taxonomic Units in Microbiome Analyses -- 1 Introduction -- 1.1 Motivating Datasets -- 1.2 Nonlinear or Stochastic Distances -- 1.3 Limitations of SVD-Based Approaches -- 2 A Bayesian Formulation -- 2.1 Posterior Density -- 3 Model Sum of Squares and Biplots -- 4 Posterior Inference -- 4.1 Gibbs Sampler -- 4.2 Dimension Reduction: Skinny Bayesian Technique -- 4.2.1 Subsetted Data Matrix -- 4.2.2 Lower Dimensional Parameters and Induced Posterior -- 4.2.3 Faster Inference Procedure -- 4.3 Model Parameter Estimates -- 5 Simulation Study -- 5.1 Generation Strategy -- 6 Data Analysis -- 6.1 Tobacco Data -- 6.2 Subway Data -- 7 Data Acknowledgement -- 8 Discussion -- Supplementary Materials -- Appendix -- Proof of Lemma 1 -- References -- Part V Special Topics -- Tree Variable Selection for Paired Case-Control Studies with Application to Microbiome Data -- 1 Introduction -- 2 Gini Index -- 2.1 Simulation Analysis -- 3 Multivariate Gini Index -- 3.1 Conditional Gini Index -- 4 Variable Importance -- 5 Analysis of Obesity Using Microbiome Data.
6 Discussion -- Appendix -- References -- Networks for Compositional Data -- 1 Introduction -- 2 Methods -- 2.1 Learning Networks from Marginal Associations -- 2.1.1 ReBoot -- 2.1.2 SparCC -- 2.1.3 CCLasso -- 2.1.4 COAT -- 2.2 Learning Networks from Conditional Associations -- 2.2.1 SPIEC-EASI -- 2.2.2 gCoda -- 2.2.3 SPRING -- 3 Data-Generating Models -- 3.1 Null Models -- 3.2 Copula Models -- 3.3 Logistic-Normal Model -- 4 Results -- 4.1 Spurious (Partial) Correlations -- 4.2 Performance in Network Discovery -- 4.3 Case Studies in R -- 5 Future Directions -- References -- Index.
Record Nr. UNISA-996466407003316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui