top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
High enthalpy gas dynamics / / Ethirajan Rathakrishnan
High enthalpy gas dynamics / / Ethirajan Rathakrishnan
Autore Rathakrishnan Ethirajan
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , 2015
Descrizione fisica 1 online resource (781 p.)
Disciplina 533/.2
Soggetto topico Gas dynamics
Gases - Thermal properties
Enthalpy
ISBN 1-118-82191-2
1-119-11312-1
1-118-82190-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; About the Author; Preface; Chapter 1: Basic Facts; 1.1 Introduction; 1.2 Enthalpy versus Internal Energy; 1.3 Gas Dynamics of Perfect Gases; 1.4 Compressible Flow; 1.5 Compressibility; 1.6 Supersonic Flow; 1.7 Speed of Sound; 1.8 Temperature Rise; 1.9 Mach Angle; 1.10 Summary; Exercise Problems; References; Chapter 2: Thermodynamics of Fluid Flow; 2.1 Introduction; 2.2 First Law of Thermodynamics; 2.3 The Second Law of Thermodynamics (Entropy Equation); 2.4 Thermal and Calorical Properties; 2.5 The Perfect Gas; 2.6 Summary; Exercise Problems
ReferencesChapter 3: Wave Propagation; 3.1 Introduction; 3.2 Velocity of Sound; 3.3 Subsonic and Supersonic Flows; 3.4 Similarity Parameters; 3.5 Continuum Hypothesis; 3.6 Compressible Flow Regimes; 3.7 Summary; Exercise Problems; References; Chapter 4: High-Temperature Flows; 4.1 Introduction; 4.2 Importance of High-Enthalpy Flows; 4.3 Nature of High-Enthalpy Flows; 4.4 Most Probable Macrostate; 4.5 Counting the Number of Microstates for a given Macrostate; 4.6 Evaluation of Thermodynamic Properties; 4.7 Evaluation of Partition Function in terms of
4.8 High-Temperature Thermodynamic Properties of a Single-Species Gas4.9 Equilibrium Properties of High-Temperature Air; 4.10 Kinetic Theory of Gases; 4.11 Collision Frequency and Mean Free Path; 4.12 Velocity and Speed Distribution Functions; 4.13 Inviscid High-Temperature Equilibrium Flows; 4.14 Governing Equations; 4.15 Normal and Oblique Shocks; 4.16 Oblique Shock Wave in an Equilibrium Gas; 4.17 Equilibrium Quasi-One-Dimensional Nozzle Flows; 4.18 Frozen and Equilibrium Flows; 4.19 Equilibrium and Frozen Specific Heats; 4.20 Inviscid High-Temperature Nonequilibrium Flows
4.21 Nonequilibrium Normal Shock and Oblique Shock Flows4.22 Nonequilibrium Flow over Blunt-Nosed Bodies; 4.23 Transport Properties in High-Temperature Gases; 4.24 Summary; Exercise Problems; References; Chapter 5: Hypersonic Flows; 5.1 Introduction; 5.2 Newtonian Flow Model; 5.3 Mach Number Independence Principle; 5.4 Hypersonic Flow Characteristics; 5.5 Governing Equations; 5.6 Dependent Variables; 5.7 Transport Properties; 5.8 Continuity Equation; 5.9 Momentum Equation; 5.10 Energy Equation; 5.11 General Form of the Equations of Motion; 5.12 Experimental Measurements of Hypersonic Flows
5.13 Measurements of Hypersonic Flows5.14 Summary; Exercise Problems; References; Chapter 6: Aerothermodynamics; 6.1 Introduction; 6.2 Empirical Correlations; 6.3 Viscous Interaction with External Flow; 6.4 CFD for Hypersonic Flows; 6.5 Computation Based on a Two-layer Flow Model; 6.6 Calibration and Validation of the CFD Codes; 6.7 Basic CFD-Intuitive Understanding; 6.8 Summary; Exercise Problem; References; Chapter 7: High-Enthalpy Facilities; 7.1 Introduction; 7.2 Hotshot Tunnels; 7.3 Plasma Arc Tunnels; 7.4 Shock Tubes; 7.5 Shock Tunnels; 7.6 Gun Tunnels
7.7 Some of the Working Facilities
Record Nr. UNINA-9910132295303321
Rathakrishnan Ethirajan  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High enthalpy gas dynamics / / Ethirajan Rathakrishnan
High enthalpy gas dynamics / / Ethirajan Rathakrishnan
Autore Rathakrishnan Ethirajan
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , 2015
Descrizione fisica 1 online resource (781 p.)
Disciplina 533/.2
Soggetto topico Gas dynamics
Gases - Thermal properties
Enthalpy
ISBN 1-118-82191-2
1-119-11312-1
1-118-82190-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; About the Author; Preface; Chapter 1: Basic Facts; 1.1 Introduction; 1.2 Enthalpy versus Internal Energy; 1.3 Gas Dynamics of Perfect Gases; 1.4 Compressible Flow; 1.5 Compressibility; 1.6 Supersonic Flow; 1.7 Speed of Sound; 1.8 Temperature Rise; 1.9 Mach Angle; 1.10 Summary; Exercise Problems; References; Chapter 2: Thermodynamics of Fluid Flow; 2.1 Introduction; 2.2 First Law of Thermodynamics; 2.3 The Second Law of Thermodynamics (Entropy Equation); 2.4 Thermal and Calorical Properties; 2.5 The Perfect Gas; 2.6 Summary; Exercise Problems
ReferencesChapter 3: Wave Propagation; 3.1 Introduction; 3.2 Velocity of Sound; 3.3 Subsonic and Supersonic Flows; 3.4 Similarity Parameters; 3.5 Continuum Hypothesis; 3.6 Compressible Flow Regimes; 3.7 Summary; Exercise Problems; References; Chapter 4: High-Temperature Flows; 4.1 Introduction; 4.2 Importance of High-Enthalpy Flows; 4.3 Nature of High-Enthalpy Flows; 4.4 Most Probable Macrostate; 4.5 Counting the Number of Microstates for a given Macrostate; 4.6 Evaluation of Thermodynamic Properties; 4.7 Evaluation of Partition Function in terms of
4.8 High-Temperature Thermodynamic Properties of a Single-Species Gas4.9 Equilibrium Properties of High-Temperature Air; 4.10 Kinetic Theory of Gases; 4.11 Collision Frequency and Mean Free Path; 4.12 Velocity and Speed Distribution Functions; 4.13 Inviscid High-Temperature Equilibrium Flows; 4.14 Governing Equations; 4.15 Normal and Oblique Shocks; 4.16 Oblique Shock Wave in an Equilibrium Gas; 4.17 Equilibrium Quasi-One-Dimensional Nozzle Flows; 4.18 Frozen and Equilibrium Flows; 4.19 Equilibrium and Frozen Specific Heats; 4.20 Inviscid High-Temperature Nonequilibrium Flows
4.21 Nonequilibrium Normal Shock and Oblique Shock Flows4.22 Nonequilibrium Flow over Blunt-Nosed Bodies; 4.23 Transport Properties in High-Temperature Gases; 4.24 Summary; Exercise Problems; References; Chapter 5: Hypersonic Flows; 5.1 Introduction; 5.2 Newtonian Flow Model; 5.3 Mach Number Independence Principle; 5.4 Hypersonic Flow Characteristics; 5.5 Governing Equations; 5.6 Dependent Variables; 5.7 Transport Properties; 5.8 Continuity Equation; 5.9 Momentum Equation; 5.10 Energy Equation; 5.11 General Form of the Equations of Motion; 5.12 Experimental Measurements of Hypersonic Flows
5.13 Measurements of Hypersonic Flows5.14 Summary; Exercise Problems; References; Chapter 6: Aerothermodynamics; 6.1 Introduction; 6.2 Empirical Correlations; 6.3 Viscous Interaction with External Flow; 6.4 CFD for Hypersonic Flows; 6.5 Computation Based on a Two-layer Flow Model; 6.6 Calibration and Validation of the CFD Codes; 6.7 Basic CFD-Intuitive Understanding; 6.8 Summary; Exercise Problem; References; Chapter 7: High-Enthalpy Facilities; 7.1 Introduction; 7.2 Hotshot Tunnels; 7.3 Plasma Arc Tunnels; 7.4 Shock Tubes; 7.5 Shock Tunnels; 7.6 Gun Tunnels
7.7 Some of the Working Facilities
Record Nr. UNINA-9910807756403321
Rathakrishnan Ethirajan  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (xxiv, 554 pages) : illustrations
Disciplina 530.4/74
539
Collana Cold Atoms
Soggetto topico Cold gases
Quantum theory
Gases - Thermal properties
Phase transformations (Statistical physics)
ISBN 1-299-46212-X
1-84816-812-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics
1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements
3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers')
3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements
Part II. Ultracold Bosonic Gases: Theoretical Modelling
Record Nr. UNINA-9910779690503321
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (xxiv, 554 pages) : illustrations
Disciplina 530.4/74
539
Collana Cold Atoms
Soggetto topico Cold gases
Quantum theory
Gases - Thermal properties
Phase transformations (Statistical physics)
ISBN 1-299-46212-X
1-84816-812-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics
1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements
3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers')
3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements
Part II. Ultracold Bosonic Gases: Theoretical Modelling
Record Nr. UNINA-9910822478503321
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rational extended thermodynamics / Ingo Müller, Tommaso Ruggeri
Rational extended thermodynamics / Ingo Müller, Tommaso Ruggeri
Autore Müller, Ingo
Edizione [2nd ed.]
Pubbl/distr/stampa New York : Springer, c1998
Descrizione fisica xv, 396 p. : ill. ; 25 cm
Disciplina 536.7
Altri autori (Persone) Ruggeri, Tommasoauthor
Collana Springer tracts in natural philosophy ; 37
Soggetto topico Thermodynamics
Gases - Thermal properties
Fluids - Thermal properties
Second sound
ISBN 0387983732
Classificazione AMS 80-02
AMS 73-02
AMS 73B30
AMS 76-02
LC QC311.M784
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001807189707536
Müller, Ingo  
New York : Springer, c1998
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui