Computational intelligence and mathematics for tackling complex problems ; October 2-5, 2019, Toledo, Spain . 2 / / editors, María Eugenia Cornejo [et al.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (xi, 238 pages) : illustrations (some color) |
Disciplina | 510 |
Collana | Studies in computational intelligence |
Soggetto topico |
Computational intelligence
Fuzzy mathematics |
ISBN | 3-030-88817-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522959303321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Cuadernos del CIMBAGE |
Pubbl/distr/stampa | Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires |
Descrizione fisica | 1 online resource |
Soggetto topico |
Business - Mathematical models - Research
Fuzzy sets Fuzzy mathematics Management - Methodology Mathématiques floues Gestion - Méthodologie Affaires - Modèles mathématiques - Recherche Ensembles flous |
Soggetto genere / forma | Periodicals. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | spa |
Altri titoli varianti | Cuadernos del Centro de Investigación en Metodologías Borrosas Aplicadas a la Gestión y Economía |
Record Nr. | UNISA-996211820803316 |
Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Cuadernos del CIMBAGE |
Pubbl/distr/stampa | Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires |
Descrizione fisica | 1 online resource |
Soggetto topico |
Business - Mathematical models - Research
Fuzzy sets Fuzzy mathematics Management - Methodology Mathématiques floues Gestion - Méthodologie Affaires - Modèles mathématiques - Recherche Ensembles flous |
Soggetto genere / forma | Periodicals. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | spa |
Altri titoli varianti | Cuadernos del Centro de Investigación en Metodologías Borrosas Aplicadas a la Gestión y Economía |
Record Nr. | UNISA-996354149803316 |
Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Cuadernos del CIMBAGE |
Pubbl/distr/stampa | Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires |
Descrizione fisica | 1 online resource |
Soggetto topico |
Business - Mathematical models - Research
Fuzzy sets Fuzzy mathematics Management - Methodology Mathématiques floues Gestion - Méthodologie Affaires - Modèles mathématiques - Recherche Ensembles flous |
Soggetto genere / forma | Periodicals. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | spa |
Altri titoli varianti | Cuadernos del Centro de Investigación en Metodologías Borrosas Aplicadas a la Gestión y Economía |
Record Nr. | UNINA-9910147024803321 |
Buenos Aires : , : Facultad de Ciencias Económicas, Universidad de Buenos Aires | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Defects of properties in mathematics [[electronic resource] ] : quantitative characterizations / / Adrian I. Ban & Sorin G. Gal |
Autore | Ban Adrian I |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (365 p.) |
Disciplina | 510 |
Altri autori (Persone) | GalSorin G. <1953-> |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Mathematics
Fuzzy mathematics Deviation (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 981-277-764-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 Introduction; 1.1 General Description of the Topic; 1.2 On Chapter 2: Defect of Property in Set Theory; 1.3 On Chapter 3: Defect of Property in Topology; 1.4 On Chapter 4: Defect of Property in Measure Theory; 1.5 On Chapter 5: Defect of Property in Real Function Theory; 1.6 On Chapter 6: Defect of Property in Functional Analysis; 1.7 On Chapter 7: Defect of Property in Algebra; 1.8 On Chapter 8: Miscellaneous; Chapter 2 Defect of Property in Set Theory; 2.1 Measures of Fuzziness; 2.2 Intuitionistic Entropies; 2.3 Applications
2.3.1 Application to determination of degree of interference2.3.2 Application to description of the performance of systems; 2.3.3 Application to digital image processing; 2.4 Bibliographical Remarks; Chapter 3 Defect of Property in Topology; 3.1 Measures of Noncompactness for Classical Sets; 3.2 Random Measures of Noncompactness; 3.3 Measures of Noncompactness for Fuzzy Subsets in Metric Space; 3.4 Measures of Noncompactness for Fuzzy Subsets in Topological Space; 3.5 Defects of Opening and of Closure for Subsets in Metric Space; 3.6 Bibliographical Remarks and Open Problems Chapter 4 Defect of Property in Measure Theory4.1 Defect of Additivity: Basic Definitions and Properties; 4.1.1 Application to calculation of fuzzy integral; 4.1.2 Application to best approximation of a fuzzy measure; 4.1.3 A metric on the family of fuzzy measures; 4.2 Defect of Complementarity; 4.3 Defect of Monotonicity; 4.4 Defect of Subadditivity and of Superadditivity; 4.5 Defect of Measurability; 4.6 Bibliographical Remarks; Chapter 5 Defect of Property in Real Function Theory; 5.1 Defect of Continuity of Differentiability and of Integrability 5.2 Defect of Monotonicity of Convexity and of Linearity5.3 Defect of Equality for Inequalities; 5.4 Bibliographical Remarks and Open Problems; Chapter 6 Defect of Property in Functional Analysis; 6.1 Defect of Orthogonality in Real Normed Spaces; 6.2 Defect of Property for Sets in Normed Spaces; 6.3 Defect of Property for Functionals; 6.4 Defect of Property for Linear Operators on Normed Spaces; 6.5 Defect of Fixed Point; 6.6 Bibliographical Remarks and Open Problems; Chapter 7 Defect of Property in Algebra; 7.1 Defects of Property for Binary Operations 7.2 Calculations of the Defect of Property7.3 Defect of Idempotency and Distributivity of Triangular Norms; 7.4 Applications; 7.5 Bibliographical Remarks; Chapter 8 Miscellaneous; 8.1 Defect of Property in Complex Analysis; 8.2 Defect of Property in Geometry; 8.3 Defect of Property in Number Theory; 8.4 Defect of Property in Fuzzy Logic; 8.5 Bibliographical Remarks and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910450986503321 |
Ban Adrian I | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Defects of properties in mathematics [[electronic resource] ] : quantitative characterizations / / Adrian I. Ban & Sorin G. Gal |
Autore | Ban Adrian I |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (365 p.) |
Disciplina | 510 |
Altri autori (Persone) | GalSorin G. <1953-> |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Mathematics
Fuzzy mathematics Deviation (Mathematics) |
ISBN | 981-277-764-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 Introduction; 1.1 General Description of the Topic; 1.2 On Chapter 2: Defect of Property in Set Theory; 1.3 On Chapter 3: Defect of Property in Topology; 1.4 On Chapter 4: Defect of Property in Measure Theory; 1.5 On Chapter 5: Defect of Property in Real Function Theory; 1.6 On Chapter 6: Defect of Property in Functional Analysis; 1.7 On Chapter 7: Defect of Property in Algebra; 1.8 On Chapter 8: Miscellaneous; Chapter 2 Defect of Property in Set Theory; 2.1 Measures of Fuzziness; 2.2 Intuitionistic Entropies; 2.3 Applications
2.3.1 Application to determination of degree of interference2.3.2 Application to description of the performance of systems; 2.3.3 Application to digital image processing; 2.4 Bibliographical Remarks; Chapter 3 Defect of Property in Topology; 3.1 Measures of Noncompactness for Classical Sets; 3.2 Random Measures of Noncompactness; 3.3 Measures of Noncompactness for Fuzzy Subsets in Metric Space; 3.4 Measures of Noncompactness for Fuzzy Subsets in Topological Space; 3.5 Defects of Opening and of Closure for Subsets in Metric Space; 3.6 Bibliographical Remarks and Open Problems Chapter 4 Defect of Property in Measure Theory4.1 Defect of Additivity: Basic Definitions and Properties; 4.1.1 Application to calculation of fuzzy integral; 4.1.2 Application to best approximation of a fuzzy measure; 4.1.3 A metric on the family of fuzzy measures; 4.2 Defect of Complementarity; 4.3 Defect of Monotonicity; 4.4 Defect of Subadditivity and of Superadditivity; 4.5 Defect of Measurability; 4.6 Bibliographical Remarks; Chapter 5 Defect of Property in Real Function Theory; 5.1 Defect of Continuity of Differentiability and of Integrability 5.2 Defect of Monotonicity of Convexity and of Linearity5.3 Defect of Equality for Inequalities; 5.4 Bibliographical Remarks and Open Problems; Chapter 6 Defect of Property in Functional Analysis; 6.1 Defect of Orthogonality in Real Normed Spaces; 6.2 Defect of Property for Sets in Normed Spaces; 6.3 Defect of Property for Functionals; 6.4 Defect of Property for Linear Operators on Normed Spaces; 6.5 Defect of Fixed Point; 6.6 Bibliographical Remarks and Open Problems; Chapter 7 Defect of Property in Algebra; 7.1 Defects of Property for Binary Operations 7.2 Calculations of the Defect of Property7.3 Defect of Idempotency and Distributivity of Triangular Norms; 7.4 Applications; 7.5 Bibliographical Remarks; Chapter 8 Miscellaneous; 8.1 Defect of Property in Complex Analysis; 8.2 Defect of Property in Geometry; 8.3 Defect of Property in Number Theory; 8.4 Defect of Property in Fuzzy Logic; 8.5 Bibliographical Remarks and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910785086603321 |
Ban Adrian I | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Defects of properties in mathematics : quantitative characterizations / / Adrian I. Ban & Sorin G. Gal |
Autore | Ban Adrian I |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (365 p.) |
Disciplina | 510 |
Altri autori (Persone) | GalSorin G. <1953-> |
Collana | Series on concrete and applicable mathematics |
Soggetto topico |
Mathematics
Fuzzy mathematics Deviation (Mathematics) |
ISBN | 981-277-764-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 Introduction; 1.1 General Description of the Topic; 1.2 On Chapter 2: Defect of Property in Set Theory; 1.3 On Chapter 3: Defect of Property in Topology; 1.4 On Chapter 4: Defect of Property in Measure Theory; 1.5 On Chapter 5: Defect of Property in Real Function Theory; 1.6 On Chapter 6: Defect of Property in Functional Analysis; 1.7 On Chapter 7: Defect of Property in Algebra; 1.8 On Chapter 8: Miscellaneous; Chapter 2 Defect of Property in Set Theory; 2.1 Measures of Fuzziness; 2.2 Intuitionistic Entropies; 2.3 Applications
2.3.1 Application to determination of degree of interference2.3.2 Application to description of the performance of systems; 2.3.3 Application to digital image processing; 2.4 Bibliographical Remarks; Chapter 3 Defect of Property in Topology; 3.1 Measures of Noncompactness for Classical Sets; 3.2 Random Measures of Noncompactness; 3.3 Measures of Noncompactness for Fuzzy Subsets in Metric Space; 3.4 Measures of Noncompactness for Fuzzy Subsets in Topological Space; 3.5 Defects of Opening and of Closure for Subsets in Metric Space; 3.6 Bibliographical Remarks and Open Problems Chapter 4 Defect of Property in Measure Theory4.1 Defect of Additivity: Basic Definitions and Properties; 4.1.1 Application to calculation of fuzzy integral; 4.1.2 Application to best approximation of a fuzzy measure; 4.1.3 A metric on the family of fuzzy measures; 4.2 Defect of Complementarity; 4.3 Defect of Monotonicity; 4.4 Defect of Subadditivity and of Superadditivity; 4.5 Defect of Measurability; 4.6 Bibliographical Remarks; Chapter 5 Defect of Property in Real Function Theory; 5.1 Defect of Continuity of Differentiability and of Integrability 5.2 Defect of Monotonicity of Convexity and of Linearity5.3 Defect of Equality for Inequalities; 5.4 Bibliographical Remarks and Open Problems; Chapter 6 Defect of Property in Functional Analysis; 6.1 Defect of Orthogonality in Real Normed Spaces; 6.2 Defect of Property for Sets in Normed Spaces; 6.3 Defect of Property for Functionals; 6.4 Defect of Property for Linear Operators on Normed Spaces; 6.5 Defect of Fixed Point; 6.6 Bibliographical Remarks and Open Problems; Chapter 7 Defect of Property in Algebra; 7.1 Defects of Property for Binary Operations 7.2 Calculations of the Defect of Property7.3 Defect of Idempotency and Distributivity of Triangular Norms; 7.4 Applications; 7.5 Bibliographical Remarks; Chapter 8 Miscellaneous; 8.1 Defect of Property in Complex Analysis; 8.2 Defect of Property in Geometry; 8.3 Defect of Property in Number Theory; 8.4 Defect of Property in Fuzzy Logic; 8.5 Bibliographical Remarks and Open Problems; Bibliography; Index |
Record Nr. | UNINA-9910823107103321 |
Ban Adrian I | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Defects of properties in mathematics : quantitative characterizations / Adrian I. Ban & Sorin G. Gal |
Autore | Ban, Adrian I. |
Pubbl/distr/stampa | Singapore : World Scientific, c2002 |
Descrizione fisica | xi, 352 p. ; 23 cm. |
Disciplina | 510 |
Altri autori (Persone) | Gal, Sorin G. |
Collana | Series on concrete and applicable mathematics ; 5 |
Soggetto topico |
Deviation (Mathematics)
Fuzzy mathematics Mathematics |
ISBN | 9810249241 |
Classificazione | AMS 00A05 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003676299707536 |
Ban, Adrian I. | ||
Singapore : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Dual-Control-Design : TP and TS Fuzzy Model Transformation Based Control Optimisation and Design / / Péter Baranyi |
Autore | Baranyi Péter |
Edizione | [First edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (255 pages) |
Disciplina | 629.8312 |
Collana | Topics in Intelligent Engineering and Informatics Series |
Soggetto topico |
Control theory
Fuzzy mathematics Tensor products |
ISBN | 3-031-44575-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- Part I Introduction -- 1 Key Messages of the Book -- 1.1 Mathematical Perspective -- 1.2 TS Fuzzy Modelling Perspective -- 1.3 System Design Perspective -- References -- 2 Outline of the Book -- 2.1 Chapters of the Book -- References -- Part II Basic Concepts -- 3 Notations and Basic Concepts -- 3.1 Notations -- 3.2 Concepts -- 3.3 Tensor Product (TP) Operations -- 3.3.1 Matrix-Tensor Product -- 3.3.2 Multiple Matrix-Tensor Product -- 3.4 Tensor Product Functions -- 3.4.1 Tensor Product Functions in the Form of Vector-Tensor Products -- 3.4.2 TP Functions with Linear Indexing -- 3.5 TS Fuzzy Models Given by TP Operations -- References -- 4 Discretization Via Random and Rectangular Grids Leading to Bi-Linear Approximations -- 4.1 Notations and Basic Concepts -- 4.2 Bi-Linear Approximations Via Discretization on a Rectangular Grid -- 4.3 Bi-Linear Approximations Based on Training via Random Grid -- 4.4 From Random Grids to Rectangular Grid Based Discretizations -- 4.5 Example: Random Versus Rectangular Grid Based Discretizations -- References -- Part III TS Fuzzy Model Transformation -- 5 TP Grid Structure of Functions -- 5.1 Structure of This Chapter -- 5.2 Singular Value Decomposition of Matrices -- 5.2.1 Example: Applying CSVD to Neural Networks -- 5.3 Higher-Order Singular Value Decomposition of Tensors -- 5.4 TP Grid Structure of Functions -- 5.5 HOSVD Based TP Grid Structure of Functions -- 5.6 Example: Eliminating the Difference Between the Random and the Rectangular Grid Based Discretization -- 5.7 Refining the TP Grid Structure -- 5.8 Example: Refining the TP Grid Structure -- References -- 6 TP Model Transformation -- 6.1 Structure of This Chapter -- 6.2 Key Idea in This Chapter -- 6.3 TP Model Transformation -- 6.3.1 Example 1: Parameter Varying Neural Network.
6.3.2 Example 2: TP Model Transformation -- 6.3.3 Example 3: Refining the TP Function -- 6.3.4 Example 4: Refinement in General -- 6.3.5 Example 5: Refinement Versus Use of a High Density Discretization Grid -- 6.3.6 Example 6: Refinement Does Not Expand to Further Ranks -- 6.4 Reinforcing the Constraints on the Weighting Functions -- 6.4.1 Example 7: Reinforcing the Bounding of the Refined Weighting Functions -- 6.5 PARAFAC Based TP Model Transformation -- 6.5.1 Example: PARAFAC Based TP Model Transformation -- 6.6 Normalised PARAFAC Based TP Model Transformation -- 6.7 Refined PARAFAC Based TP Model Transformation -- 6.7.1 Example: Refined PARAFAC Based TP Model Transformation -- References -- 7 TS Fuzzy Model Transformation -- 7.1 Structure of This Chapter -- 7.2 Transforming the Weighting Functions to Antecedent Membership Functions -- 7.3 TS Fuzzy Model Transformation -- 7.3.1 Example: TS Fuzzy Model Transformation -- 7.3.2 Example: Calculating the Membership Functions During Rank Reduction -- 7.4 Nullpoint Separation -- 7.5 Separating the Constant Elements -- 7.5.1 Example: Separating the Constant Elements Leads to a Different Solution -- 7.5.2 Example: Separating the Constant Elements May Decrease the Rank -- 7.5.3 Example: Separating the Constant Elements May Decrease the Number of Rules -- 7.6 Interpretability Versus Approximation Accuracy -- 7.6.1 Example: Interpretability of the TS Fuzzy Models -- References -- 8 Pseudo TP/TS Fuzzy Model Transformation -- 8.1 Pseudo TP/TS Fuzzy Model Transformation -- 8.1.1 Example: Pseudo TP/TS Model Transformation -- 8.2 Combination of the TP/TS and the Pseudo TP/TS Fuzzy Model Transformations -- 8.2.1 Example: Combining the TS and the Pseudo TS Fuzzy Model Transformations -- References -- 9 Generalized TS Fuzzy Model Transformation -- 9.1 Restructuring the Elements in a Given Function. 9.2 Generalized TS Fuzzy Model Transformation -- 9.2.1 Example: The Generalised TS Fuzzy Model Transformation -- References -- 10 How to Manipulate the Input Space -- 10.1 Structure of This Chapter -- 10.2 Input Space Transformation in General -- 10.3 Extracting Non-linearities -- 10.4 Introducing Fictive Parameters -- 10.5 Example: Functions with Circular Shape -- 10.6 Example: Transforming Infinite Element TS Fuzzy Models to Finite Element Models -- References -- Part IV Dual-Control Design -- 11 Preparation of TS Fuzzy Models for Further Design -- 11.1 Structure of the Chapter -- 11.2 Basic Concepts -- 11.2.1 State-Space Systems -- 11.3 Convex Hulls Defined by the TS Fuzzy Model -- 11.4 Control Design Schema -- 11.4.1 State/Output Feedback Based Controller Design -- 11.5 Role of the TS Fuzzy Model Transformation in Control Design -- 11.6 Preparing the TS Fuzzy Model of Dynamic Systems -- References -- 12 Example I: TS Fuzzy Model Variants of the TORA System -- 12.1 Structure of the Chapter -- 12.2 Dynamic Model of the TORA -- 12.3 TS Fuzzy Models of the TORA -- 12.4 Input Space Manipulations of the TORA Model -- 12.4.1 Introducing a Fictive Parameter in the TORA Model -- 12.4.2 Extracting Non-linearity and Introduction of a Fictive Parameter in the TORA Model -- 12.4.3 Further TS Fuzzy Model Variants of the TORA -- References -- 13 Example II: TS Fuzzy Model Variants of the Aeroelastic Wing Section -- 13.1 Structure of This Example -- 13.2 Model of the Aeroelastic Wing Section -- 13.3 TS Fuzzy Models of the Aeroelastic Wing Section -- 13.4 Input Space Manipulations to the Aeroelastic Wing Section -- 13.4.1 Extracting Non-linear Components of the Aeroelastic Wing Section -- 13.4.2 Introducing a Fictive Parameter to the Model of the Aeroelastic Wing Section -- 13.4.3 Further TS Fuzzy Model Variants -- References. 14 Revealing the qLPV Structure Using the TS Fuzzy Model Transformation -- 14.1 Structuring the System Matrix in qLPV Representations -- 14.2 Extracting LPV or qLPV Structures Using the TS Fuzzy Model Transformation -- 14.2.1 Example: Extracting the qLPV Model of the Aeroelastic Wing Section -- 14.3 Refinement in the Case of Linearization Based TS Fuzzy Model Transformation -- 14.3.1 Example: Refining the Extracted qLPV TS Fuzzy Model of the Aeroelastic Wing Section -- References -- 15 Dual-Control Design -- 15.1 TS Fuzzy Model Transformation in the Identification Phase -- 15.2 TS Fuzzy Model Transformation in the Design Phase -- References. |
Record Nr. | UNINA-9910765485403321 |
Baranyi Péter | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fuzzy arbitrary order system : fuzzy fractional differential equations and applications / / Snehashish Chakraverty, Smita Tapaswini, Diptiranjan Behera |
Autore | Chakraverty Snehashish |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (275 p.) |
Disciplina | 515/.352 |
Soggetto topico |
Fractional differential equations
Fuzzy mathematics Differential equations |
ISBN |
1-119-00417-9
1-119-00413-6 1-119-00423-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Preliminaries of Fuzzy Set Theory; Bibliography; Chapter 2 Basics of Fractional and Fuzzy Fractional Differential Equations; Bibliography; Chapter 3 Analytical Methods for Fuzzy Fractional Differential Equations (FFDES); 3.1 n-Term Linear Fuzzy Fractional Linear Differential Equations; 3.2 Proposed Methods; Bibliography; Chapter 4 Numerical Methods for Fuzzy Fractional Differential Equations; 4.1 Homotopy Perturbation Method (HPM); 4.2 Adomian Decomposition Method (ADM); 4.3 Variational Iteration Method (VIM)
BibliographyChapter 5 Fuzzy Fractional Heat Equations; 5.1 Arbitrary-Order Heat Equation; 5.2 Solution of Fuzzy Arbitrary-Order Heat Equations by HPM; 5.3 Numerical Examples; 5.4 Numerical Results; Bibliography; Chapter 6 Fuzzy Fractional Biomathematical Applications; 6.1 Fuzzy Arbitrary-Order Predator-Prey Equations; 6.1.1 Particular Case; 6.2 Numerical Results of Fuzzy Arbitrary-Order Predator-Prey Equations; Bibliography; Chapter 7 Fuzzy Fractional Chemical Problems; 7.1 Arbitrary-Order Rossler's Systems; 7.2 HPM Solution of Uncertain Arbitrary-Order Rossler's System; 7.3 Particular Case 7.3.1 Special Case7.4 Numerical Results; Bibliography; Chapter 8 Fuzzy Fractional Structural Problems; 8.1 Fuzzy Fractionally Damped Discrete System; 8.2 Uncertain Response Analysis; 8.2.1 Uncertain Step Function Response; 8.2.2 Uncertain Impulse Function Response; 8.3 Numerical Results; 8.3.1 Case Studies for Uncertain Step Function Response; 8.3.2 Case Studies for Uncertain Impulse Function Response; 8.4 Fuzzy Fractionally Damped Continuous System; 8.5 Uncertain Response Analysis; 8.5.1 Unit step Function Response; 8.5.2 Unit Impulse Function Response; 8.6 Numerical Results 8.6.1 Case Studies for Fuzzy Unit Step Response8.6.2 Case Studies for Fuzzy Unit Impulse Response; Bibliography; Chapter 9 Fuzzy Fractional Diffusion Problems; 9.1 Fuzzy Fractional-Order Diffusion Equation; 9.1.1 Double-Parametric-Based Solution of Uncertain Fractional-Order Diffusion Equation; 9.1.2 Solution Bounds for Different External Forces; 9.2 Numerical Results of Fuzzy Fractional Diffusion Equation; Bibliography; Chapter 10 Uncertain Fractional Fornberg-Whitham Equations; 10.1 Parametric-Based Interval Fractional Fornberg-Whitham Equation; 10.2 Solution by VIM 10.3 Solution Bounds for Different Interval Initial Conditions10.4 Numerical Results; Bibliography; Chapter 11 Fuzzy Fractional Vibration Equation of Large Membrane; 11.1 Double-Parametric-Based Solution of Uncertain Vibration Equation of Large Membrane; 11.2 Solutions of Fuzzy Vibration Equation of Large Membrane; 11.3 Case Studies (Solution Bounds for Particular Cases); 11.4 Numerical Results for Fuzzy Fractional Vibration Equation for Large Membrane; Bibliography; Chapter 12 Fuzzy Fractional Telegraph Equations; 12.1 Double-Parametric-Based Fuzzy Fractional Telegraph Equations 12.2 Solutions of Fuzzy Telegraph Equations Using Homotopy Perturbation Method |
Record Nr. | UNINA-9910135037603321 |
Chakraverty Snehashish | ||
Hoboken, New Jersey : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|