top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Exploring Quantum Contextuality with Photons / / by Zheng-Hao Liu
Exploring Quantum Contextuality with Photons / / by Zheng-Hao Liu
Autore Liu Zheng-Hao
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (170 pages)
Disciplina 530.12
003.54
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Quantum computing
Quantum entanglement
Quantum theory
Computer simulation
Mathematical physics
Optics
Angular momentum
Quantum Information
Quantum Correlation and Entanglement
Quantum Simulations
Fundamental concepts and interpretations of QM
Mathematical Methods in Physics
Angular momentum of light
ISBN 981-9961-67-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The Theory of Quantum Contextuality -- Quantum Information with Linear Optics -- Experimental Study of Contextuality Beyond Nonlocality -- All-Versus-Nothing Paradoxes in Quantum Contextuality -- Contextuality in the Pre-Postselecting Paradoxes.
Record Nr. UNINA-9910765490703321
Liu Zheng-Hao  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Higher-Form Symmetry and Eigenstate Thermalization Hypothesis / / by Osamu Fukushima
Higher-Form Symmetry and Eigenstate Thermalization Hypothesis / / by Osamu Fukushima
Autore Fukushima Osamu
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIV, 75 p. 14 illus., 13 illus. in color.)
Disciplina 530.12
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Quantum theory
Statistical physics
Particles (Nuclear physics)
Quantum field theory
Fundamental concepts and interpretations of QM
Statistical Physics
Elementary Particles, Quantum Field Theory
ISBN 9789819616435
9819616433
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- 1 Introduction. -- 2 Thermalization in isolated quantum systems. -- 3 Violation of the ETH in QFTs with higher-form symmetry. -- 4 Effects of projective phase on the ETH. -- 5 Conclusion and discussion. -- 6 Appendices.
Record Nr. UNINA-9910996495003321
Fukushima Osamu  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
On the Wave Nature of Matter : A New Approach to Reconciling Quantum Mechanics and Relativity / / by Donald C. Chang
On the Wave Nature of Matter : A New Approach to Reconciling Quantum Mechanics and Relativity / / by Donald C. Chang
Autore Chang Donald C. (HKUST.)
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (341 pages)
Disciplina 530.12
Soggetto topico Quantum theory
General relativity (Physics)
Electrodynamics
Optics
Particles (Nuclear physics)
Quantum field theory
Fundamental concepts and interpretations of QM
General Relativity
Classical Electrodynamics
Light-Matter Interaction
Elementary Particles, Quantum Field Theory
ISBN 9783031487774
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction: The Particle World Versus the Wave World -- 1.1 The Current Quantum Theory is a Particle Theory -- 1.2 What is the Problem with the Current View of Quantum Physics? Why Do We Need a Paradigm Shift? -- 1.2.1 Lack of Understanding on the Physical Basis of Quantum Mechanics -- 1.2.2 Fundamental Conflict Between Quantum Mechanics and Relativity -- 1.2.3 Important Questions that the Current Quantum Theory Cannot Resolve -- 1.2.4 The Particle Physics Establishment Had Given up Hopes to Resolve the Fundamental Issues -- 1.3 The Basic Idea of the Quantum Wave Model -- 1.3.1 Justification for the Hypotheses of the Quantum Wave Model -- 1.4 How Can the Quantum Wave Model Help to Resolve the Problems Encountered in the Current Quantum Theory? -- References -- Part I The Physical Basis of Wave-Particle Duality -- 2 The Birth of Quantum Mechanics: Arriving of the Photon Concept -- 2.1 Is Light a Wave or a Particle? How Do We Know that Light is a Wave? -- 2.1.1 The Double-Slit Experiment -- 2.1.2 The Bragg Diffraction Experiment -- 2.1.3 Maxwell and Hertz Showed that Light is a Kind of Electromagnetic Wave -- 2.2 The Discovery of Light Wave Behaving like a Particle -- 2.2.1 Quantization of Light -- 2.3 How Did Planck Derive the Planck's Relation? -- 2.4 Further Evidence Supporting the Idea of Photon -- 2.4.1 The Photo-Electric Effect -- 2.4.2 The Compton Scattering -- 2.5 Chapter Summary -- References -- 3 Derivation of the Planck's Relation, the de Broglie Relation, and Heisenberg's Uncertainty Principle Based on the Maxwell Theory -- 3.1 Why is Light Quantized? What is the Physical Meaning of the Planck's Constant? -- 3.1.1 Planck Was not Satisfied with His Original Derivation -- 3.2 Derivation of the Planck's Relation Based on the Maxwell Theory -- 3.2.1 Energy and Momentum of the Electromagnetic Wave.
3.3 Calculating the Energy Contained Within a Wave Packet Based on Fourier Transform -- 3.3.1 Determination of the Planck's Constant -- 3.4 Derivation of the de Broglie Relation: Total Momentum Carried in a Wave Packet -- 3.5 Derivation of Heisenberg's Uncertainty Principle -- 3.6 The Principle of All-Or-None: Physical Meaning of the Planck's Constant as Derived from the Maxwell Theory -- 3.7 Chapter Summary -- References -- 4 The Merging of the Particle and Wave Concepts: Evidence Suggesting that the Sub-atomic Particle is a Quantized Excitation Wave -- 4.1 The Discovery of Massive Particle Behaving Like a Wave -- 4.1.1 The Revolutionary Idea of de Broglie -- 4.1.2 Confirmation of the de Broglie Relation Using Bragg's Diffraction Experiments -- 4.1.3 Double-Slit Experiment for a Single Electron -- 4.2 How to Explain Wave-Particle Duality? The Statistical Interpretation of the Copenhagen School -- 4.2.1 Debates on the Probabilistic Interpretations -- 4.3 Evidence Suggesting that the Electron is a Physical Wave -- 4.3.1 Why Do We Think Elementary Particles Are Waves? -- 4.4 Hints from the Collider Experiments: How Can Particles Be Created from Nowhere? -- 4.5 The Idea of Solitons -- 4.6 Chapter Summary -- References -- Part II Wave Excitation in the Vacuum: What are the Physical Properties of Matter Wave? -- 5 The Mechanism of Wave Excitation and the Physical Nature of the Vacuum Medium -- 5.1 Useful Analogy: Wave Propagation in a Classical Mechanical System -- 5.1.1 Wave in a Harmonic Oscillator -- 5.1.2 Wave Propagation in a One-Dimensional String -- 5.2 Wave Propagation in a 3-Dimensional Elastic Solid -- 5.2.1 Application of the Helmholtz Decomposition Theorem on the Wave Motion of an Elastic Solid -- 5.3 Mechanism of Wave Excitation in the Vacuum Medium -- 5.3.1 How does Wave Propagate in the Vacuum?.
5.4 What is the Physical Nature of the Vacuum? The Aether Hypothesis -- 5.5 Evidence Indicating that the Vacuum is Not an Empty Space -- 5.6 Chapter Summary -- References -- 6 The Vacuum is a Dielectric Medium According to the Maxwell Theory -- Its Basic Field is the Electric Vector Potential Z -- 6.1 Physical Nature of the Vacuum: Implications from the Maxwell Theory -- 6.1.1 Implication of Maxwell's Introduction of the Electric Displacement Concept -- 6.1.2 Maxwell's Theory of Light Propagation Implied That the Vacuum is a Dielectric Medium -- 6.2 Structure of the Vacuum Medium According to Maxwell's Hypothesis -- 6.3 What is the Basic Field of the Vacuum Excitation Wave? -- 6.3.1 What is Its Basic Field of the Photon? -- 6.3.2 Origin of the Concept of Vector Potential: The Theorem of Helmholtz Decomposition -- 6.4 The Excitation Wave of the Vacuum is Characterized by the Variation of the Electric Vector Potential Z -- 6.4.1 Mechanism of Wave Propagation in the Vacuum as Driven by Z -- 6.5 Comparison Between Wave Excitations in the Mechanical System and the Vacuum Medium -- 6.6 Chapter Summary -- References -- Part III Derivation of the Quantum Wave Equations and the Physical Meaning of the Quantum Wave Function -- 7 Derivation of the Quantum Wave Equations Based on Wave Excitation in the Vacuum -- 7.1 The Wave Equation of the Quantum Vacuum -- 7.1.1 Identifying Z as the Wave Function of the Excitation Wave in the Vacuum -- 7.1.2 Connecting Z with the Quantum Wave Function of a Particle -- 7.2 The Wave Equation of a Photon Based on the Dynamic Change of Z -- 7.3 Deriving the Wave Equation of a Massive Particle -- 7.3.1 Physical Nature of the Wave Function Representing a Massive Particle -- 7.4 Identifying the Physical Meaning of Parameters Within the Wave Function -- 7.5 Derivation of the Klein-Gordon Equation from the Wave Equation of the Vacuum.
7.6 Chapter Summary -- References -- 8 Derivation of the Dirac Equation from the Wave Equation of the Vacuum -- 8.1 Derivation of the Quantum Wave Equation for an Electron -- 8.1.1 How did Dirac Derive his Equation Originally? -- 8.2 Derivation of the Dirac Equation Based on the Quantum Wave Model -- 8.2.1 To Derive the Dirac Equation by Factorizing the Klein-Gordon Equation -- 8.3 Physical Meaning of the Dirac Wave Function -- 8.4 Dirac's "Hole Theory" and the Prediction of Anti-Particle -- 8.5 Chapter Summary -- References -- 9 Derivation of the Schrödinger Equation: What is the Physical Meaning of Its Wave Function? -- 9.1 Derivation of the Schrödinger Equation Based on the Quantum Wave Model -- 9.1.1 Development of the Correspondence Rules -- 9.1.2 Construction of the Schrödinger Equation Based on the Klein-Gordon Equation -- 9.2 Physical Meaning of the Quantum Wave Function of the Schrödinger Equation -- 9.2.1 All Quantum Wave Equations Can Be Traced to the Wave Equation of the Vacuum -- 9.3 Transition from Classical Physics to Quantum Mechanics: The Mechanical View Versus the Wave View -- 9.4 Chapter Summary -- References -- 10 A New Understanding on Wave-Particle Duality: Comparing the Quantum Wave Model with the Copenhagen Interpretation and Other Alternative Models -- 10.1 Bohr's Statistical Interpretation Can Be Explained by the Quantum Wave Model -- 10.1.1 Why Can a Physical Wave Function Give the Probability of Detecting the Quantum Particle During Its Measurement? A Case Study Using the Photon as an Example -- 10.1.2 Similarly, the Probability of Detecting an Electron at a Particular Location Is also Related to the Amplitude of the Electron's Wave Function -- 10.2 The Statistical Interpretation Does Not Work for the Electron Wave Function Inside an Atom -- 10.3 Controversy About the Different Interpretations of Quantum Mechanics.
10.3.1 Skepticism About the Copenhagen Interpretation -- 10.3.2 The Many-World Interpretation of QM -- 10.3.3 The Pilot Wave Theory -- 10.4 How Did These Different Theories Explain the Double-Slit Experiment for Electrons? -- 10.4.1 The Double-Slit Experiment -- 10.5 Conclusion: Only the Quantum Wave Model Can Fully Explain the Quantum Phenomenon of Wave-Particle Duality -- 10.6 Chapter Summary -- References -- Part IV The Physical Meaning of Mass and Energy From a Wave Perspective -- 11 Why Can Mass and Energy Be Converted Between Each Other? Energy, Momentum, and Mass Have Geometrical Meanings in the Wave View -- 11.1 The Discovery of Energy-Mass Equivalence Was Not Based on Special Relativity -- 11.2 Why Mass and Energy Are Convertible? It is a Quantum Wave Effect -- 11.2.1 The Relation of Mass-Energy Equivalence for Photon is Clearly a Quantum Effect -- 11.3 The Physical Meaning of Mass: Mass Should Be Treated on the Same Footing as Energy and Momentum -- 11.3.1 Where Does Mass Come From? The Physical Meaning of Mass According to Newton -- 11.4 How Can a Wave Have Mass? -- 11.4.1 The Meaning of Mass in the Wave View -- 11.5 Origin of the Energy-Momentum Relation of a Quantum Particle -- 11.5.1 In the Teaching of Relativity, the Rest Mass is Simply an Integration Constant for Deriving the Energy-Momentum Relation -- 11.5.2 In the Quantum Wave Model, the Energy-Momentum Relation of a Particle Is Originated from the Dispersion Relation of the Quantum Wave Function -- 11.6 Energy, Momentum, and Mass Are All Related to the Curvature of Bending the Vacuum Medium -- 11.6.1 The Resting Energy and the Kinetic Energy of a Single Particle Appear to Form a Two-Dimensional Hilbert Space -- 11.7 How Can an Excitation Wave Behave Like a Particle? -- 11.7.1 The "Quantum" Phenomenon is Just a Manifestation of the "Principle of All-or-None".
11.7.2 There is a One-to-One Correspondence Between the Particle Properties and the Wave Properties.
Record Nr. UNINA-9910841856603321
Chang Donald C. (HKUST.)  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optomechanics with Quantum Vacuum Fluctuations / / by Zhujing Xu
Optomechanics with Quantum Vacuum Fluctuations / / by Zhujing Xu
Autore Xu Zhujing
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (120 pages)
Disciplina 535.15
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Quantum optics
Optics
Quantum computing
Quantum theory
Quantum Optics
Applied Optics
Quantum Information
Fundamental concepts and interpretations of QM
ISBN 9783031430527
3031430522
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction -- Chapter 2: Measurement and Calculation of Casimir Force -- Chapter 3: Experimental Realization of a Casimir Diode: Non-Reciprocal Energy Transfer By Casimir Force -- Chapter 4: Experimental Realization of a Casimir Transistor: Switching and Amplifying Energy Transfer In A Three-Body Casimir System -- Chapter 5: Proposal On Detecting Rotational Quantum Vacuum Friction -- Chapter 6: Proposal On Detecting Casimir Torque -- Chapter 7: Conclusion And Outlook.
Record Nr. UNINA-9910760280203321
Xu Zhujing  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum Mechanics : From Atoms to Nuclei / / by Umberto Lombardo, Gianluca Giuliani, Yifei Niu
Quantum Mechanics : From Atoms to Nuclei / / by Umberto Lombardo, Gianluca Giuliani, Yifei Niu
Autore Lombardo Umberto
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (291 pages)
Disciplina 530.12
Collana UNITEXT for Physics
Soggetto topico Quantum theory
Quantum entanglement
Quantum computers
Quantum computing
Quantum Physics
Fundamental concepts and interpretations of QM
Quantum Correlation and Entanglement
Quantum Measurement and Metrology
Quantum Computing
Quantum Information
ISBN 9789819716708
9819716705
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Space-Time Symmetries and Classical Observables -- Superposition Principle -- States and Dynamical Variables -- Space Translations and Momentum -- Elementary Phenomena -- Space Rotations and Angular Momentum -- Time Translations and Hamiltonian -- Harmonic Oscillations -- Approximations to Schr¨odinger’s Equation -- Time-Dependent Equations of Motion` -- Time-Dependent Perturbation Theory -- Two-Body Problem: Bound States -- Two-Body Problem: Scattering States -- Many-Body Systems -- The Dirac Equation -- Homogeneous Many-Body Systems -- Semi-Classical Limit -- Collective Modes in Atomic and Nuclear Systems.
Record Nr. UNINA-9910906196303321
Lombardo Umberto  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum Mechanics for Chemistry / / by Seogjoo J. Jang
Quantum Mechanics for Chemistry / / by Seogjoo J. Jang
Autore Jang Seogjoo J
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (XVIII, 432 p. 27 illus., 21 illus. in color.)
Disciplina 500
Soggetto topico Physics
Astronomy
Chemistry, Physical and theoretical
Atomic structure
Molecular structure
Quantum theory
Chemometrics
Physics and Astronomy
Physical Chemistry
Atomic and Molecular Structure and Properties
Theoretical Chemistry
Fundamental concepts and interpretations of QM
Mathematical Applications in Chemistry
ISBN 3-031-30218-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1: Concepts and Assumptions of Quantum Mechanics -- Chapter2: Dirac Notation and Principles of Quantum Mechanics -- Chapter3: Harmonic Oscillator and Vibrational Spectroscopy -- Chapter4: Multidimensional Systems and Separation of Variables -- Chapter5: Rotational States and Spectroscopy -- Chapter6: Hydrogen-like Systems and Spin Orbit States of an Electron -- Chapter7: Approximation Methods for Time Independent Schrödinger Equation -- Chapter8: Many Electron Systems and Atomic Spectroscopy -- Chapter9: Polyatomic Molecules and Molecular Spectroscopy -- Chapter10: Quantum Dynamics of Pure and Mixed States -- Chapter11: Theories for Electronic Structure Calculation of Polyatomic Molecules -- Chapter12: Special Topics.
Record Nr. UNINA-9910746093103321
Jang Seogjoo J  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Some Unusual Topics in Quantum Mechanics / / by Pankaj Sharan
Some Unusual Topics in Quantum Mechanics / / by Pankaj Sharan
Autore Sharan Pankaj
Edizione [2nd ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (xxii, 314 pages) : illustrations
Disciplina 530.12
Collana Lecture Notes in Physics
Soggetto topico Quantum theory
Particles (Nuclear physics)
Quantum field theory
Mathematical physics
Fundamental concepts and interpretations of QM
Elementary Particles, Quantum Field Theory
Mathematical Physics
ISBN 3-031-35962-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1st edition: Position operators of non-relativistic quantum mechanics -- A bundle picture of quantum mechanics -- A beam of particles = a plane wave? -- Star-product formulation of quantum mechanics -- Can there be a non-linear quantum mechanics? -- Interaction = exchange of quanta -- Proof of Wigner's theorem. 2nd edition new topics: A very brief history of Matrix mechanics -- Hydrogen atom and O(4) -- Minimum Uncertainty States -- Time Energy Uncertainty Relations? -- Force = curvature in Quantum Mechanics too! -- What is an ‘essentially self-adjoint’ operator? -- Time re-parametrization in path-integrals -- What are rigged Hilbert spaces? -- Relativistic configuration states, Dirac and Weyl equations.
Record Nr. UNINA-9910746292903321
Sharan Pankaj  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Unifying Classical and Quantum Physics : How classical and quantum physics can pass smoothly back and forth / / by Riccardo Fantoni
Unifying Classical and Quantum Physics : How classical and quantum physics can pass smoothly back and forth / / by Riccardo Fantoni
Autore Fantoni Riccardo
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (219 pages)
Disciplina 530.15
Collana Physics and Astronomy Series
Soggetto topico Mathematical physics
Particles (Nuclear physics)
Quantum field theory
Mechanics
Quantum theory
Physics
Astronomy
Mathematical Methods in Physics
Elementary Particles, Quantum Field Theory
Classical Mechanics
Fundamental concepts and interpretations of QM
Quantum Physics
Physics and Astronomy
ISBN 3-031-98123-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Triviality of four dimensional ϕ 4 theory on the lattice -- The Higgs boson -- Initial singularity problem -- Quantization procedures -- Real scalar field theory -- Path integral Monte Carlo -- Complex scalar field theory -- Conclusions.
Record Nr. UNINA-9911034860503321
Fantoni Riccardo  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...