Associative functions [[electronic resource] ] : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer
| Associative functions [[electronic resource] ] : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer |
| Autore | Alsina Claudi |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
| Descrizione fisica | 1 online resource (253 p.) |
| Disciplina | 515/.7 |
| Altri autori (Persone) |
SchweizerB (Berthold)
FrankMaurice J |
| Soggetto topico |
Functional equations
Associative law (Mathematics) Mathematical analysis Functional equations - Study and teaching Associative law (Mathematics) - Study and teaching Mathematical analysis - Study and teaching |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-91934-9
9786611919344 981-277-420-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Special symbols -- 1. Introduction. 1.1. Historical notes. 1.2. Preliminaries. 1.3. t-norms and s-norms. 1.4. Copulas -- 2. Representation theorems for associative functions. 2.1. Continuous, Archimedean t-norms. 2.2. Additive and multiplicative generators. 2.3. Extension to arbitrary closed intervals. 2.4. Continuous, non-Archimedean t-norms. 2.5. Non-continuous t-norms. 2.6. Families of t-norms. 2.7. Other representation theorems. 2.8. Related functional equations -- 3. Functional equations involving t-norms. 3.1. Simultaneous associativity. 3.2. n-duality. 3.3. Simple characterizations of Min. 3.4. Homogeneity. 3.5. Distributivity. 3.6. Conical t-norms. 3.7. Rational Archimedean t-norms. 3.8. Extension and sets of uniqueness -- 4. Inequalities involving t-norms. 4.1. Notions of concavity and convexity. 4.2. The dominance relation. 4.3. Uniformly close associative functions. 4.4. Serial iterates and n-copulas. 4.5. Positivity. |
| Record Nr. | UNINA-9910451937603321 |
Alsina Claudi
|
||
| Singapore ; ; Hackensack, NJ, : World Scientific, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Associative functions [[electronic resource] ] : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer
| Associative functions [[electronic resource] ] : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer |
| Autore | Alsina Claudi |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
| Descrizione fisica | 1 online resource (253 p.) |
| Disciplina | 515/.7 |
| Altri autori (Persone) |
SchweizerB (Berthold)
FrankMaurice J |
| Soggetto topico |
Functional equations
Associative law (Mathematics) Mathematical analysis Functional equations - Study and teaching Associative law (Mathematics) - Study and teaching Mathematical analysis - Study and teaching |
| ISBN |
1-281-91934-9
9786611919344 981-277-420-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Special symbols -- 1. Introduction. 1.1. Historical notes. 1.2. Preliminaries. 1.3. t-norms and s-norms. 1.4. Copulas -- 2. Representation theorems for associative functions. 2.1. Continuous, Archimedean t-norms. 2.2. Additive and multiplicative generators. 2.3. Extension to arbitrary closed intervals. 2.4. Continuous, non-Archimedean t-norms. 2.5. Non-continuous t-norms. 2.6. Families of t-norms. 2.7. Other representation theorems. 2.8. Related functional equations -- 3. Functional equations involving t-norms. 3.1. Simultaneous associativity. 3.2. n-duality. 3.3. Simple characterizations of Min. 3.4. Homogeneity. 3.5. Distributivity. 3.6. Conical t-norms. 3.7. Rational Archimedean t-norms. 3.8. Extension and sets of uniqueness -- 4. Inequalities involving t-norms. 4.1. Notions of concavity and convexity. 4.2. The dominance relation. 4.3. Uniformly close associative functions. 4.4. Serial iterates and n-copulas. 4.5. Positivity. |
| Record Nr. | UNINA-9910778261103321 |
Alsina Claudi
|
||
| Singapore ; ; Hackensack, NJ, : World Scientific, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Associative functions : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer
| Associative functions : triangular norms and copulas / / Claudi Alsina, Maurice J. Frank, Berthold Schweizer |
| Autore | Alsina Claudi |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
| Descrizione fisica | 1 online resource (253 p.) |
| Disciplina | 515/.7 |
| Altri autori (Persone) |
SchweizerB (Berthold)
FrankMaurice J |
| Soggetto topico |
Functional equations
Associative law (Mathematics) Mathematical analysis Functional equations - Study and teaching Associative law (Mathematics) - Study and teaching Mathematical analysis - Study and teaching |
| ISBN |
9786611919344
9781281919342 1281919349 9789812774200 9812774203 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Special symbols -- 1. Introduction. 1.1. Historical notes. 1.2. Preliminaries. 1.3. t-norms and s-norms. 1.4. Copulas -- 2. Representation theorems for associative functions. 2.1. Continuous, Archimedean t-norms. 2.2. Additive and multiplicative generators. 2.3. Extension to arbitrary closed intervals. 2.4. Continuous, non-Archimedean t-norms. 2.5. Non-continuous t-norms. 2.6. Families of t-norms. 2.7. Other representation theorems. 2.8. Related functional equations -- 3. Functional equations involving t-norms. 3.1. Simultaneous associativity. 3.2. n-duality. 3.3. Simple characterizations of Min. 3.4. Homogeneity. 3.5. Distributivity. 3.6. Conical t-norms. 3.7. Rational Archimedean t-norms. 3.8. Extension and sets of uniqueness -- 4. Inequalities involving t-norms. 4.1. Notions of concavity and convexity. 4.2. The dominance relation. 4.3. Uniformly close associative functions. 4.4. Serial iterates and n-copulas. 4.5. Positivity. |
| Record Nr. | UNINA-9910953793103321 |
Alsina Claudi
|
||
| Singapore ; ; Hackensack, NJ, : World Scientific, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||