Discontinuous groups and automorphic functions / Joseph Lehner
| Discontinuous groups and automorphic functions / Joseph Lehner |
| Autore | Lehner, Joseph |
| Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, 1964 |
| Descrizione fisica | xi, 425 p. ; 26 cm |
| Disciplina | 515.93 |
| Collana | Mathematical surveys, 0076-5376 ; 8 |
| Soggetto topico |
Automorphic functions
Discontinuous groups Fuchsian groups Riemann surfaces |
| Classificazione |
AMS 11F
AMS 30F AMS 30F35 AMS 57S30 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000829019707536 |
Lehner, Joseph
|
||
| Providence, R. I. : American Mathematical Society, 1964 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Flexibility of Group Actions on the Circle [e-book] / Sang-hyun Kim, Thomas Koberda, Mahan Mj
| Flexibility of Group Actions on the Circle [e-book] / Sang-hyun Kim, Thomas Koberda, Mahan Mj |
| Autore | Kim, Sang-hyun |
| Descrizione fisica | 1 online resource |
| Disciplina | 531.11 |
| Altri autori (Persone) |
Koberda, Thomasauthor
Mj, Mahanauthor |
| Collana | Lecture notes in mathematics, 1617-9692 ; 2231 |
| Soggetto topico |
Group theory
Transformations Hyperbolic groups Homeomorphisms Fuchsian groups |
| ISBN | 9783030028558 |
| Classificazione |
AMS 57M60
AMS 37E10 AMS 57M50 AMS 20F34 AMS 37E45 AMS 20F65 AMS 57S05 |
| Formato | Software |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003692199707536 |
Kim, Sang-hyun
|
||
| Lo trovi qui: Univ. del Salento | ||
| ||
Knot theory and manifolds : proceedings of a conference held in Vancouver, Canada, June 2-4, 1983 / ed. D. Rolfsen
| Knot theory and manifolds : proceedings of a conference held in Vancouver, Canada, June 2-4, 1983 / ed. D. Rolfsen |
| Autore | Special session at the Summer meeting of the Canadian Mathematical Society <1983> |
| Pubbl/distr/stampa | Berlin ; New York : Springer-Verlag, 1985 |
| Descrizione fisica | 163 p. : ill. ; 24 cm. |
| Disciplina | 514.224 |
| Altri autori (Persone) | Rolfsen, Dale |
| Collana | Lecture notes in mathematics, 0075-8434 ; 1144 |
| Soggetto topico |
Foliations
Fuchsian groups Knot theory - Congresses Manifolds - Congresses |
| ISBN | 3540156801 |
| Classificazione |
AMS 20H10
AMS 57-06 AMS 57-XX AMS 57M25 AMS 57N10 AMS 57R30 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | en |
| Record Nr. | UNISALENTO-991001053329707536 |
Special session at the Summer meeting of the Canadian Mathematical Society <1983>
|
||
| Berlin ; New York : Springer-Verlag, 1985 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Subset Currents on Surfaces
| Subset Currents on Surfaces |
| Autore | Sasaki Dounnu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2022 |
| Descrizione fisica | 1 online resource (178 pages) |
| Disciplina |
515/.9
515.9 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Fuchsian groups
Riemann surfaces Hyperbolic groups Ergodic theory Group theory and generalizations -- Special aspects of infinite or finite groups -- Hyperbolic groups and nonpositively curved groups Functions of a complex variable -- Riemann surfaces -- Fuchsian groups and automorphic functions |
| ISBN |
9781470471682
9781470453435 |
| Classificazione | 20F6730F35 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover -- Title page -- Chapter 1. Introduction -- 1.1. Background -- 1.2. Main results -- 1.3. Future study -- 1.4. Organization of article -- 1.5. Acknowledgements -- Chapter 2. Subset Currents on Hyperbolic Groups -- 2.1. Space of subset currents on hyperbolic group -- 2.2. Measure theory background -- Chapter 3. Volume Functionals on Kleinian Groups -- Chapter 4. Subgroups, Inclusion Maps and Finite Index Extension -- 4.1. Natural continuous linear maps between subgroups -- 4.2. Finite index extension of functionals -- Chapter 5. Intersection Number -- 5.1. Intersection number of closed curves -- 5.2. Intersection number of surfaces -- 5.3. Continuous extension of intersection number -- Chapter 6. Intersection Functional on Subset Currents -- Chapter 7. Projection from Subset Currents onto Geodesic Currents -- 7.1. Construction of projection -- 7.2. Application of projection -- Chapter 8. Denseness Property of Rational Subset Currents -- 8.1. Denseness property of free groups -- 8.2. Approximation by a sequence of subgroups -- 8.3. Denseness property of surface groups -- Bibliography -- Index -- Back Cover. |
| Record Nr. | UNINA-9910957081003321 |
Sasaki Dounnu
|
||
| Providence : , : American Mathematical Society, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman
| Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman |
| Autore | Gilman Jane <1945-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (221 p.) |
| Disciplina | 515/.223 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Fuchsian groups
Kleinian groups Teichmüller spaces |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0140-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""I: Introduction""; ""1 Introduction""; ""1.1 Overview Intersecting Axes""; ""1.2 Overview of the intertwining cases""; ""1.3 Why an algorithm is needed""; ""2 The Acute Triangle Theorem""; ""2.1 Nielsen equivalence""; ""2.2 Idea of proof: Acute triangle theorem""; ""2.3 Labeling Conventions""; ""2.4 Ascending order conventions""; ""2.5 The Triangle Algorithm""; ""2.6 Q and the last triangle along A""; ""2.7 Combining triangle algorithm steps""; ""2.8 The sides and heights converge to 0""; ""2.9 Acute triangle theorem: proof""; ""3 Discreteness Theorem Proof Outline""
""3.1 The Discreteness Theorem""""3.2 Discreteness theorem""; ""3.3 Geometric equivalence theorems""; ""II: Preliminaries""; ""4 Triangle Groups and their Tilings""; ""4.1 Basic facts about triangle groups""; ""4.2 Minimal tiling distances""; ""4.3 The wedge at a vertex""; ""4.4 Proofs of lemmas and theorems""; ""4.5 Additional Notation""; ""4.6 Distances in the extended wedge""; ""5 Pentagons""; ""5.1 Constructing the pentagon, P[sub(A,B)]""; ""5.2 Notation""; ""5.3 Applying the Poincare Polygon Theorem""; ""5.4 Pentagon Tilings""; ""5.5 Distances in the shingling"" ""8.4 Pentagon distances (2,3, n) t = 3 k = 3""; ""9 Nielsen Eq: (2,3, n) t = 3; k = 3""; ""9.1 Introduction""; ""9.2 Types of triples: distances""; ""9.3 Locating t[sub(2)] and t[sub(3)]""; ""10 Nielsen Eq: (2,4, n) t = 2; k = 2""; ""10.1 Introduction""; ""10.2 Types of triples""; ""10.3 Location of t[sub(1)],t[sub(2)] and t[sub(3)]""; ""11 Pentagon t = 9 & 2�2 Spectrum""; ""11.1 Step 1: Label the wedge""; ""11.2 Step 2: Double and Extend""; ""11.3 Step 3: Drop perpendiculars""; ""11.4 The two�two spectrum""; ""11.5 More distance computations""; ""11.6 Distances to q�[sub(0)]"" ""11.7 Locate three order two points""""12 The Seven & Geometric Eq t = 9""; ""12.1 Introduction""; ""12.2 The variation of h and b""; ""12.3 Rule out a seven on the β side""; ""12.4 Rule out a seven on the D side""; ""12.5 Interior sevens""; ""12.6 Notation""; ""12.7 Geometric equivalence (2,3, 7) t = 9; k = 2""; ""13 Discreteness Theorem Proof""; ""13.1 The Proof of the Discreteness Theorem""; ""13.2 The proof of sufficiency""; ""IV: The Real Number Algorithm and the Turing Machine Algorithm""; ""14 Forms of the Algorithm""; ""14.1 What is an algorithm?"" ""14.2 The Elliptic Order Algorithm"" |
| Record Nr. | UNINA-9910480467703321 |
Gilman Jane <1945->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman
| Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman |
| Autore | Gilman Jane <1945-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (221 p.) |
| Disciplina | 515/.223 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Fuchsian groups
Kleinian groups Teichmüller spaces |
| ISBN | 1-4704-0140-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""I: Introduction""; ""1 Introduction""; ""1.1 Overview Intersecting Axes""; ""1.2 Overview of the intertwining cases""; ""1.3 Why an algorithm is needed""; ""2 The Acute Triangle Theorem""; ""2.1 Nielsen equivalence""; ""2.2 Idea of proof: Acute triangle theorem""; ""2.3 Labeling Conventions""; ""2.4 Ascending order conventions""; ""2.5 The Triangle Algorithm""; ""2.6 Q and the last triangle along A""; ""2.7 Combining triangle algorithm steps""; ""2.8 The sides and heights converge to 0""; ""2.9 Acute triangle theorem: proof""; ""3 Discreteness Theorem Proof Outline""
""3.1 The Discreteness Theorem""""3.2 Discreteness theorem""; ""3.3 Geometric equivalence theorems""; ""II: Preliminaries""; ""4 Triangle Groups and their Tilings""; ""4.1 Basic facts about triangle groups""; ""4.2 Minimal tiling distances""; ""4.3 The wedge at a vertex""; ""4.4 Proofs of lemmas and theorems""; ""4.5 Additional Notation""; ""4.6 Distances in the extended wedge""; ""5 Pentagons""; ""5.1 Constructing the pentagon, P[sub(A,B)]""; ""5.2 Notation""; ""5.3 Applying the Poincare Polygon Theorem""; ""5.4 Pentagon Tilings""; ""5.5 Distances in the shingling"" ""8.4 Pentagon distances (2,3, n) t = 3 k = 3""; ""9 Nielsen Eq: (2,3, n) t = 3; k = 3""; ""9.1 Introduction""; ""9.2 Types of triples: distances""; ""9.3 Locating t[sub(2)] and t[sub(3)]""; ""10 Nielsen Eq: (2,4, n) t = 2; k = 2""; ""10.1 Introduction""; ""10.2 Types of triples""; ""10.3 Location of t[sub(1)],t[sub(2)] and t[sub(3)]""; ""11 Pentagon t = 9 & 2�2 Spectrum""; ""11.1 Step 1: Label the wedge""; ""11.2 Step 2: Double and Extend""; ""11.3 Step 3: Drop perpendiculars""; ""11.4 The two�two spectrum""; ""11.5 More distance computations""; ""11.6 Distances to q�[sub(0)]"" ""11.7 Locate three order two points""""12 The Seven & Geometric Eq t = 9""; ""12.1 Introduction""; ""12.2 The variation of h and b""; ""12.3 Rule out a seven on the β side""; ""12.4 Rule out a seven on the D side""; ""12.5 Interior sevens""; ""12.6 Notation""; ""12.7 Geometric equivalence (2,3, 7) t = 9; k = 2""; ""13 Discreteness Theorem Proof""; ""13.1 The Proof of the Discreteness Theorem""; ""13.2 The proof of sufficiency""; ""IV: The Real Number Algorithm and the Turing Machine Algorithm""; ""14 Forms of the Algorithm""; ""14.1 What is an algorithm?"" ""14.2 The Elliptic Order Algorithm"" |
| Record Nr. | UNINA-9910788758403321 |
Gilman Jane <1945->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman
| Two-generator discrete subgroups of PSL (2, R) / / Jane Gilman |
| Autore | Gilman Jane <1945-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (221 p.) |
| Disciplina | 515/.223 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Fuchsian groups
Kleinian groups Teichmüller spaces |
| ISBN | 1-4704-0140-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""I: Introduction""; ""1 Introduction""; ""1.1 Overview Intersecting Axes""; ""1.2 Overview of the intertwining cases""; ""1.3 Why an algorithm is needed""; ""2 The Acute Triangle Theorem""; ""2.1 Nielsen equivalence""; ""2.2 Idea of proof: Acute triangle theorem""; ""2.3 Labeling Conventions""; ""2.4 Ascending order conventions""; ""2.5 The Triangle Algorithm""; ""2.6 Q and the last triangle along A""; ""2.7 Combining triangle algorithm steps""; ""2.8 The sides and heights converge to 0""; ""2.9 Acute triangle theorem: proof""; ""3 Discreteness Theorem Proof Outline""
""3.1 The Discreteness Theorem""""3.2 Discreteness theorem""; ""3.3 Geometric equivalence theorems""; ""II: Preliminaries""; ""4 Triangle Groups and their Tilings""; ""4.1 Basic facts about triangle groups""; ""4.2 Minimal tiling distances""; ""4.3 The wedge at a vertex""; ""4.4 Proofs of lemmas and theorems""; ""4.5 Additional Notation""; ""4.6 Distances in the extended wedge""; ""5 Pentagons""; ""5.1 Constructing the pentagon, P[sub(A,B)]""; ""5.2 Notation""; ""5.3 Applying the Poincare Polygon Theorem""; ""5.4 Pentagon Tilings""; ""5.5 Distances in the shingling"" ""8.4 Pentagon distances (2,3, n) t = 3 k = 3""; ""9 Nielsen Eq: (2,3, n) t = 3; k = 3""; ""9.1 Introduction""; ""9.2 Types of triples: distances""; ""9.3 Locating t[sub(2)] and t[sub(3)]""; ""10 Nielsen Eq: (2,4, n) t = 2; k = 2""; ""10.1 Introduction""; ""10.2 Types of triples""; ""10.3 Location of t[sub(1)],t[sub(2)] and t[sub(3)]""; ""11 Pentagon t = 9 & 2�2 Spectrum""; ""11.1 Step 1: Label the wedge""; ""11.2 Step 2: Double and Extend""; ""11.3 Step 3: Drop perpendiculars""; ""11.4 The two�two spectrum""; ""11.5 More distance computations""; ""11.6 Distances to q�[sub(0)]"" ""11.7 Locate three order two points""""12 The Seven & Geometric Eq t = 9""; ""12.1 Introduction""; ""12.2 The variation of h and b""; ""12.3 Rule out a seven on the β side""; ""12.4 Rule out a seven on the D side""; ""12.5 Interior sevens""; ""12.6 Notation""; ""12.7 Geometric equivalence (2,3, 7) t = 9; k = 2""; ""13 Discreteness Theorem Proof""; ""13.1 The Proof of the Discreteness Theorem""; ""13.2 The proof of sufficiency""; ""IV: The Real Number Algorithm and the Turing Machine Algorithm""; ""14 Forms of the Algorithm""; ""14.1 What is an algorithm?"" ""14.2 The Elliptic Order Algorithm"" |
| Record Nr. | UNINA-9910827874503321 |
Gilman Jane <1945->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||