Absolute summability of Fourier series and orthogonal series / Yasuo Okuyama
| Absolute summability of Fourier series and orthogonal series / Yasuo Okuyama |
| Autore | Okuyama, Yasuo |
| Pubbl/distr/stampa | Berlin ; New York : Springer-Verlag, 1984 |
| Descrizione fisica | vi, 117 p. ; 25 cm. |
| Disciplina | 510 |
| Collana | Lecture notes in mathematics, 0075-8434 ; 1067 |
| Soggetto topico |
Fourier series
Orthogonal series Summability theory |
| ISBN | 3540133550 |
| Classificazione |
AMS 42A
AMS 42A28 AMS 42C15 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000642379707536 |
Okuyama, Yasuo
|
||
| Berlin ; New York : Springer-Verlag, 1984 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft / / Vladislav Klein [and three others]
| Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft / / Vladislav Klein [and three others] |
| Autore | Klein Vladislav |
| Pubbl/distr/stampa | Hampton, Virginia, : National Aeronautics and Space Administration, Langley Research Center, December 1997 |
| Descrizione fisica | 1 online resource (63 pages) : illustrations |
| Collana | NASA/TM |
| Soggetto topico |
Aerodynamic coefficients
Angle of attack Control surfaces F-16 aircraft Fourier series Harmonic analysis Wind tunnel tests |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910705768203321 |
Klein Vladislav
|
||
| Hampton, Virginia, : National Aeronautics and Space Administration, Langley Research Center, December 1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied partial differential equations : with Fourier series and boundary value problems / Richard Haberman
| Applied partial differential equations : with Fourier series and boundary value problems / Richard Haberman |
| Autore | Haberman, Richard |
| Edizione | [4th ed.] |
| Pubbl/distr/stampa | Upper Saddle River, N.J. : Pearson Prentice Hall, c2004 |
| Descrizione fisica | xviii, 769 p. : ill. ; 24 cm |
| Disciplina | 515.353 |
| Soggetto topico |
Differential equations, Partial
Fourier series Boundary value problems |
| ISBN | 0130652431 |
| Classificazione |
AMS 35-01
LC QA377.H27 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000573189707536 |
Haberman, Richard
|
||
| Upper Saddle River, N.J. : Pearson Prentice Hall, c2004 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan
| Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New York : , : Springer, , 2013 |
| Descrizione fisica | 1 online resource (385 p.) |
| Disciplina | 515.2433 |
| Altri autori (Persone) | YanDunyan |
| Soggetto topico |
Fourier series
Euclidean algorithm |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910452733703321 |
Lu Shanzhen <1939->
|
||
| New York : , : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
| Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2013] |
| Descrizione fisica | 1 online resource (viii, 376 pages) : illustrations |
| Disciplina | 515.2433 |
| Collana | Gale eBooks |
| Soggetto topico |
Fourier series
Euclidean algorithm Fourier series - Mathematical models Euclidean algorithm - Mathematical models |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910790428703321 |
Lu Shanzhen <1939->
|
||
| New Jersey : , : World Scientific, , [2013] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
| Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2013] |
| Descrizione fisica | 1 online resource (viii, 376 pages) : illustrations |
| Disciplina | 515.2433 |
| Collana | Gale eBooks |
| Soggetto topico |
Fourier series
Euclidean algorithm Fourier series - Mathematical models Euclidean algorithm - Mathematical models |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910815200403321 |
Lu Shanzhen <1939->
|
||
| New Jersey : , : World Scientific, , [2013] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Carleson-Hunt theorem on Fourier series / Ole G. Jorsboe, Leif Mejlbro
| The Carleson-Hunt theorem on Fourier series / Ole G. Jorsboe, Leif Mejlbro |
| Autore | Jorsboe, Ole Groth |
| Pubbl/distr/stampa | Berlin : Springer-Verlag, 1982 |
| Descrizione fisica | iv, 121, [1] p. : ill. ; 25 cm. |
| Disciplina | 510 |
| Altri autori (Persone) | Mejlbro, Leifauthor |
| Collana | Lecture notes in mathematics, 0075-8434 ; 911 |
| Soggetto topico |
Convergence
Fourier series |
| ISBN | 3540111980 |
| Classificazione | AMS 43A50 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | en |
| Record Nr. | UNISALENTO-991000732899707536 |
Jorsboe, Ole Groth
|
||
| Berlin : Springer-Verlag, 1982 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The Carleson-Hunt theorem on fourier series / / Ole G. Jorsboe, Leif Mejlbro
| The Carleson-Hunt theorem on fourier series / / Ole G. Jorsboe, Leif Mejlbro |
| Autore | Jørsboe Ole Groth |
| Edizione | [1st ed. 1982.] |
| Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer-Verlag, , [1982] |
| Descrizione fisica | 1 online resource (VI, 130 p.) |
| Disciplina | 515.2433 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Fourier series
Convergence |
| ISBN | 3-540-39006-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | I -- II -- III -- IV. |
| Record Nr. | UNISA-996466488103316 |
Jørsboe Ole Groth
|
||
| Berlin ; ; Heidelberg : , : Springer-Verlag, , [1982] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
A comparison of three random number generators for aircraft dynamic modeling applications / / Jared A. Grauer
| A comparison of three random number generators for aircraft dynamic modeling applications / / Jared A. Grauer |
| Autore | Grauer Jared A. |
| Pubbl/distr/stampa | Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , May 2017 |
| Descrizione fisica | 1 online resource (37 pages) : illustrations |
| Collana | NASA/TM |
| Soggetto topico |
Dynamic models
Fourier series Monte Carlo method Random numbers Stability derivatives White noise |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910705714403321 |
Grauer Jared A.
|
||
| Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , May 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The decomposition of Walsh and Fourier series / / by I.I. Hirschman
| The decomposition of Walsh and Fourier series / / by I.I. Hirschman |
| Autore | Hirschman I. I (Isidore Isaac), <1922-1990, > |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , [1955] |
| Descrizione fisica | 1 online resource (68 p.) |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Fourier series
Harmonic functions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-8218-9950-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""PART 1. WALSH SERIES""; ""REFERENCES""; ""PART 2. FOURIER SERIES""; ""REFERENCES"" |
| Record Nr. | UNINA-9910480837703321 |
Hirschman I. I (Isidore Isaac), <1922-1990, >
|
||
| Providence : , : American Mathematical Society, , [1955] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||