Compressed flammable gas cylinders and associated hazards |
Pubbl/distr/stampa | Washington, DC : , : United States Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation : , : Office of New Reactors : , : Office of Federal and State Materials and Environmental Management Programs, , 2013 |
Descrizione fisica | 1 online resource (5 pages) |
Collana | NRC information notice |
Soggetto topico |
Gas cylinders
Flammable gases Nuclear power plants - Equipment and supplies |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910716653303321 |
Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910142522303321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNISA-996199267403316 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Estimating the flammable mass of a vapor cloud [[electronic resource] /] / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
660.2804
660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910829839303321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Estimating the flammable mass of a vapor cloud / / John L. Woodward |
Autore | Woodward John Lowell |
Pubbl/distr/stampa | New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina | 660/.2804 |
Collana | CCPS concept book |
Soggetto topico |
Vapors - Flammability - Mathematical models
Explosions - Mathematical models Fire - Mathematical models Chemical plants - Safety measures Flammable gases |
ISBN |
1-282-84929-8
9786612849299 0-470-93536-7 1-59124-559-1 0-470-93535-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Estimating the Flammable Mass of a Vapor Cloud; CONTENTS; Preface; Acknowledgments; Glossary; Nomenclature; 1 INTRODUCTION; 1.1. Why Calculate Flammable Mass?; 1.2. How Are Flammable Mass Estimates Used?; 1.3. Other CCPS Publications; 2 OVERVIEW; 2.1. Context; 2.2. Objectives; 1.3. How to Use This Book; 3 INDUSTRY EXPERIENCES WITH FLAMMABLE VAPOR CLOUDS; 3.1. Property Losses from Vapor Cloud Accidents; 3.2. Examples of Vapor Cloud Events; 3.2.1. Bangkok, Thailand, LPG Vapor Cloud; 3.2.2. Saint Herblain, France, Gasoline Cloud, October 7,1991
3.2.3. Pampa, Texas, Hoechst-Celanese Explosion, November 17,19873.2.4. Monsanto Ethanol Explosion, Autumn, 1970; 3.2.5. Mexico City Vapor Cloud and Explosion, November 19,1984; 3.2.6. Pasadena, Texas Fire and Explosion, October 23,1989; 3.3. Examples with Postaccident Determination of Flammable Mass; 3.3.1. Flixborough Vapor Cloud Explosion, June 1,1974; 3.3.2. Piper Alpha North Sea Platform Fire, July 6,1988; 3.3.3. DSM Naphtha Cracker, Beek, the Netherlands, 7 November 1975; 4 BASIC CONCEPTS-FLUID FLOW, FIRES, AND EXPLOSIONS; 4.1. Discharge Characteristics 4.1.1. Single-Phase Discharge Rates from Tanks4.1.2. Single-Phase Discharge Rates from Pipes; 4.1.3. Two-Phase Discharge Rates from Tanks; 4.1.4. Two-Phase Discharge Rates from Pipes; 4.1.5. Aerosol Formation and Drop Size Correlations; 4.1.6. Rainout; 4.1.7. Pool Spread and Evaporation on Land; 4.2. Dispersion Factors; 4.2.1. Jet Mixing; 4.2.2. Meteorology; 4.2.3. Surface Roughness and Terrain; 4.2.4. Averaging Time; 4.2.5. Impingement and Cratering; 4.2.6. Obstacle Effects; 4.3. Sources of Ignition; 4.4. Flame Characteristics; 4.4.1. Flammable Limits; 4.4.2. Flammable Limits with Inerts 4.4.3. Autoignition Temperature for Gases4.4.4. Minimum Ignition Energy for Gases; 4.4.5. Flash Point; 4.4.6. Laminar Burning Velocity and Turbulent Flame Speed; 4.5. Aerosol Flammability; 4.6. Turbulence Effects; 4.6.1. Turbulence Effects of Jet Plume Ignition; 4.6.2. Turbulence and Pockets of Flammable Material; 4.7. Flash Fires; 4.8. Explosions; 4.8.1. Confinement and Congestion; 4.8.2. Effect of Concentration on Explosion Overpressure; 4.8.3. TNT Equivalence Explosion Models; 4.8.4. Volume Source Explosion Models; 4.8.5. Determining Fuel Reactivity 4.8.6. Determining Degree of Confinement4.8.7. Determining Level of Congestion; 4.8.8. Multiple Congested Volumes; 4.9. Minimum Flammable Mass for Vapor Cloud Explosions; 4.10. Probability of Vapor Cloud Ignition and Explosion; 5 DETERMINATION OF FLAMMABLE MASS; 5.1. Estimation Methods by Degree of Confinement; 5.2. Methods for Finding the Flammable Mass in Unconfined Vapor Clouds; 5.2.1. Screening: Rules of Thumb; 5.2.2. Calculating Flammable Mass with Dispersion Models; 5.3. Methods for Finding the Flammable Mass in Partially Confined Vapor Clouds 5.3.1. Estimating Flammable Mass for Potential Explosion Sites |
Record Nr. | UNINA-9910876662603321 |
Woodward John Lowell | ||
New York, : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|