Financial risk forecasting [[electronic resource] ] : the theory and practice of forecasting market risk, with implementation in R and Matlab / / Jón Daníelsson |
Autore | Daníelsson Jón |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : Wiley, 2011 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina |
658.155
658.1550112 |
Collana | Wiley finance series |
Soggetto topico |
Financial risk management - Forecasting
Financial risk management - Simulation methods R (Computer program language) Gestió financera Gestió del risc Previsió Mètodes de simulació |
Soggetto genere / forma | Llibres electrònics |
ISBN |
1-119-97711-8
1-119-20586-7 1-283-40512-1 9786613405128 1-119-97710-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Financial Risk Forecasting; Contents; Preface; Acknowledgments; Abbreviations; Notation; 1 Financial markets, prices and risk; 1.1 Prices, returns and stock indices; 1.1.1 Stock indices; 1.1.2 Prices and returns; 1.2 S&P 500 returns; 1.2.1 S&P 500 statistics; 1.2.2 S&P 500 statistics in R and Matlab; 1.3 The stylized facts of financial returns; 1.4 Volatility; 1.4.1 Volatility clusters; 1.4.2 Volatility clusters and the ACF; 1.5 Nonnormality and fat tails; 1.6 Identification of fat tails; 1.6.1 Statistical tests for fat tails; 1.6.2 Graphical methods for fat tail analysis
1.6.3 Implications of fat tails in finance1.7 Nonlinear dependence; 1.7.1 Sample evidence of nonlinear dependence; 1.7.2 Exceedance correlations; 1.8 Copulas; 1.8.1 The Gaussian copula; 1.8.2 The theory of copulas; 1.8.3 An application of copulas; 1.8.4 Some challenges in using copulas; 1.9 Summary; 2 Univariate volatility modeling; 2.1 Modeling volatility; 2.2 Simple volatility models; 2.2.1 Moving average models; 2.2.2 EWMA model; 2.3 GARCH and conditional volatility; 2.3.1 ARCH; 2.3.2 GARCH; 2.3.3 The ''memory'' of a GARCH model; 2.3.4 Normal GARCH; 2.3.5 Student-t GARCH 2.3.6 (G)ARCH in mean2.4 Maximum likelihood estimation of volatility models; 2.4.1 The ARCH(1) likelihood function; 2.4.2 The GARCH(1,1) likelihood function; 2.4.3 On the importance of σ1; 2.4.4 Issues in estimation; 2.5 Diagnosing volatility models; 2.5.1 Likelihood ratio tests and parameter significance; 2.5.2 Analysis of model residuals; 2.5.3 Statistical goodness-of-fit measures; 2.6 Application of ARCH and GARCH; 2.6.1 Estimation results; 2.6.2 Likelihood ratio tests; 2.6.3 Residual analysis; 2.6.4 Graphical analysis; 2.6.5 Implementation; 2.7 Other GARCH-type models 2.7.1 Leverage effects and asymmetry2.7.2 Power models; 2.7.3 APARCH; 2.7.4 Application of APARCH models; 2.7.5 Estimation of APARCH; 2.8 Alternative volatility models; 2.8.1 Implied volatility; 2.8.2 Realized volatility; 2.8.3 Stochastic volatility; 2.9 Summary; 3 Multivariate volatility models; 3.1 Multivariate volatility forecasting; 3.1.1 Application; 3.2 EWMA; 3.3 Orthogonal GARCH; 3.3.1 Orthogonalizing covariance; 3.3.2 Implementation; 3.3.3 Large-scale implementations; 3.4 CCC and DCC models; 3.4.1 Constant conditional correlations (CCC); 3.4.2 Dynamic conditional correlations (DCC) 3.4.3 Implementation3.5 Estimation comparison; 3.6 Multivariate extensions of GARCH; 3.6.1 Numerical problems; 3.6.2 The BEKK model; 3.7 Summary; 4 Risk measures; 4.1 Defining and measuring risk; 4.2 Volatility; 4.3 Value-at-risk; 4.3.1 Is VaR a negative or positive number?; 4.3.2 The three steps in VaR calculations; 4.3.3 Interpreting and analyzing VaR; 4.3.4 VaR and normality; 4.3.5 Sign of VaR; 4.4 Issues in applying VaR; 4.4.1 VaR is only a quantile; 4.4.2 Coherence; 4.4.3 Does VaR really violate subadditivity?; 4.4.4 Manipulating VaR; 4.5 Expected shortfall 4.6 Holding periods, scaling and the square root of time |
Record Nr. | UNINA-9910139552503321 |
Daníelsson Jón | ||
Chichester, West Sussex, U.K., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Financial risk forecasting : the theory and practice of forecasting market risk, with implementation in R and Matlab / / Jón Daníelsson |
Autore | Daníelsson Jón |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : Wiley, 2011 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina |
658.155
658.1550112 |
Collana | Wiley finance series |
Soggetto topico |
Financial risk management - Forecasting
Financial risk management - Simulation methods R (Computer program language) Gestió financera Gestió del risc Previsió Mètodes de simulació |
Soggetto genere / forma | Llibres electrònics |
ISBN |
1-119-97711-8
1-119-20586-7 1-283-40512-1 9786613405128 1-119-97710-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Financial Risk Forecasting; Contents; Preface; Acknowledgments; Abbreviations; Notation; 1 Financial markets, prices and risk; 1.1 Prices, returns and stock indices; 1.1.1 Stock indices; 1.1.2 Prices and returns; 1.2 S&P 500 returns; 1.2.1 S&P 500 statistics; 1.2.2 S&P 500 statistics in R and Matlab; 1.3 The stylized facts of financial returns; 1.4 Volatility; 1.4.1 Volatility clusters; 1.4.2 Volatility clusters and the ACF; 1.5 Nonnormality and fat tails; 1.6 Identification of fat tails; 1.6.1 Statistical tests for fat tails; 1.6.2 Graphical methods for fat tail analysis
1.6.3 Implications of fat tails in finance1.7 Nonlinear dependence; 1.7.1 Sample evidence of nonlinear dependence; 1.7.2 Exceedance correlations; 1.8 Copulas; 1.8.1 The Gaussian copula; 1.8.2 The theory of copulas; 1.8.3 An application of copulas; 1.8.4 Some challenges in using copulas; 1.9 Summary; 2 Univariate volatility modeling; 2.1 Modeling volatility; 2.2 Simple volatility models; 2.2.1 Moving average models; 2.2.2 EWMA model; 2.3 GARCH and conditional volatility; 2.3.1 ARCH; 2.3.2 GARCH; 2.3.3 The ''memory'' of a GARCH model; 2.3.4 Normal GARCH; 2.3.5 Student-t GARCH 2.3.6 (G)ARCH in mean2.4 Maximum likelihood estimation of volatility models; 2.4.1 The ARCH(1) likelihood function; 2.4.2 The GARCH(1,1) likelihood function; 2.4.3 On the importance of σ1; 2.4.4 Issues in estimation; 2.5 Diagnosing volatility models; 2.5.1 Likelihood ratio tests and parameter significance; 2.5.2 Analysis of model residuals; 2.5.3 Statistical goodness-of-fit measures; 2.6 Application of ARCH and GARCH; 2.6.1 Estimation results; 2.6.2 Likelihood ratio tests; 2.6.3 Residual analysis; 2.6.4 Graphical analysis; 2.6.5 Implementation; 2.7 Other GARCH-type models 2.7.1 Leverage effects and asymmetry2.7.2 Power models; 2.7.3 APARCH; 2.7.4 Application of APARCH models; 2.7.5 Estimation of APARCH; 2.8 Alternative volatility models; 2.8.1 Implied volatility; 2.8.2 Realized volatility; 2.8.3 Stochastic volatility; 2.9 Summary; 3 Multivariate volatility models; 3.1 Multivariate volatility forecasting; 3.1.1 Application; 3.2 EWMA; 3.3 Orthogonal GARCH; 3.3.1 Orthogonalizing covariance; 3.3.2 Implementation; 3.3.3 Large-scale implementations; 3.4 CCC and DCC models; 3.4.1 Constant conditional correlations (CCC); 3.4.2 Dynamic conditional correlations (DCC) 3.4.3 Implementation3.5 Estimation comparison; 3.6 Multivariate extensions of GARCH; 3.6.1 Numerical problems; 3.6.2 The BEKK model; 3.7 Summary; 4 Risk measures; 4.1 Defining and measuring risk; 4.2 Volatility; 4.3 Value-at-risk; 4.3.1 Is VaR a negative or positive number?; 4.3.2 The three steps in VaR calculations; 4.3.3 Interpreting and analyzing VaR; 4.3.4 VaR and normality; 4.3.5 Sign of VaR; 4.4 Issues in applying VaR; 4.4.1 VaR is only a quantile; 4.4.2 Coherence; 4.4.3 Does VaR really violate subadditivity?; 4.4.4 Manipulating VaR; 4.5 Expected shortfall 4.6 Holding periods, scaling and the square root of time |
Record Nr. | UNINA-9910811774203321 |
Daníelsson Jón | ||
Chichester, West Sussex, U.K., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|