top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fiber optic component design, fabrication, testing, operation, reliability, and maintainability
Fiber optic component design, fabrication, testing, operation, reliability, and maintainability
Autore Christian N. L
Pubbl/distr/stampa [Place of publication not identified], : Noyes Data Corp, 1989
Disciplina 621.36/92
Soggetto topico Fiber optics - Reliability
Fiber optics
Engineering & Applied Sciences
Applied Physics
ISBN 0-8155-1714-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911006673903321
Christian N. L  
[Place of publication not identified], : Noyes Data Corp, 1989
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optofluidics, sensors and actuators in microstructured optical fibres / / edited by Stavros Pissadakis and Stefano Selleri
Optofluidics, sensors and actuators in microstructured optical fibres / / edited by Stavros Pissadakis and Stefano Selleri
Edizione [1st edition]
Pubbl/distr/stampa Cambridge, England : , : Woodhead Publishing, , 2015
Descrizione fisica 1 online resource (313 p.)
Disciplina 621.3692
Collana Woodhead Publishing Series in Electronic and Optical Materials
Soggetto topico Fiber optics
Fiber optics - Reliability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Related titles; Optofluidics, Sensors and Actuators in Microstructured Optical FibersWoodhead Publishing Series in Electronic and Optical M ...; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Preface; Part 1 - Materials and fabrication of microstructured optical fibres; 1 - Microfluidics flow and heat transfer in microstructured fibers of circular and elliptical geometry; 1.1 Introduction; 1.2 Governing equations of flows along a microchannel; 1.3 Numerical results; 1.4 Conclusions; Acknowledgments; References
2 - Drawn metamaterials2.1 Introduction; 2.2 Fibre-based metamaterials; 2.3 Drawn wire array metamaterials; 2.4 Drawn magnetic metamaterials; 2.5 Applications; 2.6 Future directions-challenges and opportunities; 2.7 Conclusions; References; 3 - Liquid crystal-infiltrated photonic crystal fibres for switching applications; 3.1 Introduction; 3.2 LCs in cylindrical capillaries; 3.3 Light guidance in LC-infiltrated PCFs; 3.4 Switching components based on LC-infiltrated PCFs; 3.5 Concluding remarks; Acknowledgements; References; 4 - Microstructured optical fiber filled with carbon nanotubes
4.1 Introduction4.2 Carbon nanotubes as advanced materials for environmental monitoring; 4.3 Carbon nanotubes integration techniques with optical fibers; 4.4 Sensing probes fabrication; 4.5 Experimental results; 4.6 Conclusions; References; 5 - Molten glass-infiltrated photonic crystal fibers; 5.1 Glassy materials: and why glass-infiltrated photonic crystal fibers (PCFs)?; 5.2 Glass-infiltrated PCFs: state of the art and fabrication techniques; 5.3 PBG guidance characteristics of composite all-glass PCFs; 5.4 Prospects and future directions; 5.5 Conclusions and final remarks; Acknowledgments
ReferencesPart 2 - Sensing and optofluidic applications; 6 - Microstructured optical fibre-based sensors for structural health monitoring applications; 6.1 Introduction to structural health monitoring applications and fibre Bragg grating sensors; 6.2 Microstructured optical fibres for temperature-insensitive pressure and transverse strain sensing; 6.3 Structural health monitoring-related applications of the butterfly microstructured optical fibres; 6.4 Conclusion and trends; Acknowledgements; References
7 - Liquid crystals infiltrated photonic crystal fibers (PCFs) for electromagnetic field sensing7.1 Introduction-state of the art: photonic liquid crystal fibers for electromagnetic field sensing; 7.2 LCs infiltrated microstructured optical fibers; 7.3 Electric field-induced effects; 7.4 Optical field-induced effects; 7.5 Conclusions and research directions; Acknowledgments; References; 8 - Polymer micro and microstructured fiber Bragg gratings: recent advancements and applications; 8.1 Introduction; 8.2 Polymer optical fibers; 8.3 Polymer fiber Bragg gratings
8.4 Applications of polymer fiber Bragg grating sensors
Record Nr. UNINA-9910788279203321
Cambridge, England : , : Woodhead Publishing, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optofluidics, sensors and actuators in microstructured optical fibres / / edited by Stavros Pissadakis and Stefano Selleri
Optofluidics, sensors and actuators in microstructured optical fibres / / edited by Stavros Pissadakis and Stefano Selleri
Edizione [1st edition]
Pubbl/distr/stampa Cambridge, England : , : Woodhead Publishing, , 2015
Descrizione fisica 1 online resource (313 p.)
Disciplina 621.3692
Collana Woodhead Publishing Series in Electronic and Optical Materials
Soggetto topico Fiber optics
Fiber optics - Reliability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Related titles; Optofluidics, Sensors and Actuators in Microstructured Optical FibersWoodhead Publishing Series in Electronic and Optical M ...; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Preface; Part 1 - Materials and fabrication of microstructured optical fibres; 1 - Microfluidics flow and heat transfer in microstructured fibers of circular and elliptical geometry; 1.1 Introduction; 1.2 Governing equations of flows along a microchannel; 1.3 Numerical results; 1.4 Conclusions; Acknowledgments; References
2 - Drawn metamaterials2.1 Introduction; 2.2 Fibre-based metamaterials; 2.3 Drawn wire array metamaterials; 2.4 Drawn magnetic metamaterials; 2.5 Applications; 2.6 Future directions-challenges and opportunities; 2.7 Conclusions; References; 3 - Liquid crystal-infiltrated photonic crystal fibres for switching applications; 3.1 Introduction; 3.2 LCs in cylindrical capillaries; 3.3 Light guidance in LC-infiltrated PCFs; 3.4 Switching components based on LC-infiltrated PCFs; 3.5 Concluding remarks; Acknowledgements; References; 4 - Microstructured optical fiber filled with carbon nanotubes
4.1 Introduction4.2 Carbon nanotubes as advanced materials for environmental monitoring; 4.3 Carbon nanotubes integration techniques with optical fibers; 4.4 Sensing probes fabrication; 4.5 Experimental results; 4.6 Conclusions; References; 5 - Molten glass-infiltrated photonic crystal fibers; 5.1 Glassy materials: and why glass-infiltrated photonic crystal fibers (PCFs)?; 5.2 Glass-infiltrated PCFs: state of the art and fabrication techniques; 5.3 PBG guidance characteristics of composite all-glass PCFs; 5.4 Prospects and future directions; 5.5 Conclusions and final remarks; Acknowledgments
ReferencesPart 2 - Sensing and optofluidic applications; 6 - Microstructured optical fibre-based sensors for structural health monitoring applications; 6.1 Introduction to structural health monitoring applications and fibre Bragg grating sensors; 6.2 Microstructured optical fibres for temperature-insensitive pressure and transverse strain sensing; 6.3 Structural health monitoring-related applications of the butterfly microstructured optical fibres; 6.4 Conclusion and trends; Acknowledgements; References
7 - Liquid crystals infiltrated photonic crystal fibers (PCFs) for electromagnetic field sensing7.1 Introduction-state of the art: photonic liquid crystal fibers for electromagnetic field sensing; 7.2 LCs infiltrated microstructured optical fibers; 7.3 Electric field-induced effects; 7.4 Optical field-induced effects; 7.5 Conclusions and research directions; Acknowledgments; References; 8 - Polymer micro and microstructured fiber Bragg gratings: recent advancements and applications; 8.1 Introduction; 8.2 Polymer optical fibers; 8.3 Polymer fiber Bragg gratings
8.4 Applications of polymer fiber Bragg grating sensors
Record Nr. UNINA-9910826718203321
Cambridge, England : , : Woodhead Publishing, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui