Advanced Computational Applications of Geometric Algebra : First International Conference, ICACGA 2022, Denver, CO, USA, October 2-5, 2022, Proceedings / / edited by David W. Silva, Eckhard Hitzer, Dietmar Hildenbrand
| Advanced Computational Applications of Geometric Algebra : First International Conference, ICACGA 2022, Denver, CO, USA, October 2-5, 2022, Proceedings / / edited by David W. Silva, Eckhard Hitzer, Dietmar Hildenbrand |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (254 pages) |
| Disciplina | 929.605 |
| Collana | Lecture Notes in Computer Science |
| Soggetto topico |
Computer science
Computer science - Mathematics Machine learning Mathematical physics Computer Science Mathematical Applications in Computer Science Machine Learning Theoretical, Mathematical and Computational Physics Informàtica Aprenentatge automàtic Física matemàtica |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-031-34031-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Geometric applications -- Computer science applications -- Technological applications -- Applications to physics and mathematics. |
| Record Nr. | UNINA-9910831499703321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu
| Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu |
| Autore | Popescu Sever Angel |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (833 pages) |
| Disciplina | 620.00151 |
| Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-21502-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
| Record Nr. | UNISA-996508570903316 |
Popescu Sever Angel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu
| Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu |
| Autore | Popescu Sever Angel |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (833 pages) |
| Disciplina | 620.00151 |
| Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-21502-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
| Record Nr. | UNINA-9910647396803321 |
Popescu Sever Angel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analysis and mathematical physics
| Analysis and mathematical physics |
| Pubbl/distr/stampa | [Basel etc.], : Springer, 2011- |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Mathematical physics
Physique mathématique Física matemàtica |
| Soggetto genere / forma |
Periodicals
Revistes electròniques. |
| ISSN | 1664-235X |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910307941603321 |
| [Basel etc.], : Springer, 2011- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Annales Henri Poincaré
| Annales Henri Poincaré |
| Pubbl/distr/stampa | [Basel] ; ; [Boston], : Birkhäuser Verlag, ©2000- |
| Descrizione fisica | 1 online resource |
| Disciplina | 530 |
| Soggetto topico |
Physics
Mathematical physics Physique Physique mathématique Theoretische fysica Mathematische fysica Física Física matemàtica |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 1424-0661 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910139952303321 |
| [Basel] ; ; [Boston], : Birkhäuser Verlag, ©2000- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Arithmetic and Algebraic Geometry : A Mathematical Tribute to Yuri Manin / / edited by Yuri Tschinkel
| Arithmetic and Algebraic Geometry : A Mathematical Tribute to Yuri Manin / / edited by Yuri Tschinkel |
| Autore | Tschinkel Yuri |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (453 pages) |
| Disciplina | 516.35 |
| Collana | Simons Symposia |
| Soggetto topico |
Geometry, Algebraic
Mathematical physics Logic, Symbolic and mathematical Algebraic Geometry Mathematical Physics Mathematical Logic and Foundations Física matemàtica Geometria algebraica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031741340
303174134X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Projecting lattice polytopes according to the Minimal Model Program -- Zeta-polynomials, superpolynomials, DAHA and plane curve singularities -- Rational points over C1 fields -- On isomorphisms of ind-varieties of generalized flags -- Spectral description of non-commutative local systems on surfaces and non-commutative cluster varieties -- Semi-stable reduction of foliations -- The Hasse principle for 9-nodal cubic 3-folds -- Manin's work in birational geometry -- Endomorphism Algebras and Automorphism Groups of certain Complex Tori. |
| Record Nr. | UNINA-9910921017103321 |
Tschinkel Yuri
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
| A Birman-Schwinger principle in galactic dynamics / / Markus Kunze |
| Autore | Kunze Markus <1967-> |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (X, 206 p. 3 illus., 1 illus. in color.) |
| Disciplina | 523.112 |
| Collana | Progress in mathematical physics |
| Soggetto topico |
Galactic dynamics
Física matemàtica Teoria quàntica Astrofísica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-75186-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory. |
| Record Nr. | UNISA-996466406303316 |
Kunze Markus <1967->
|
||
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
| A Birman-Schwinger principle in galactic dynamics / / Markus Kunze |
| Autore | Kunze Markus <1967-> |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (X, 206 p. 3 illus., 1 illus. in color.) |
| Disciplina | 523.112 |
| Collana | Progress in mathematical physics |
| Soggetto topico |
Galactic dynamics
Física matemàtica Teoria quàntica Astrofísica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-75186-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory. |
| Record Nr. | UNINA-9910495224403321 |
Kunze Markus <1967->
|
||
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Communications on pure and applied mathematics
| Communications on pure and applied mathematics |
| Pubbl/distr/stampa | New York, NY, : John Wiley & Sons |
| Descrizione fisica | 1 online resource |
| Disciplina | 510 |
| Soggetto topico |
Mathematics
Mechanics Mathématiques Mécanique Matemàtica Física matemàtica Anàlisi matemàtica |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 1097-0312 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910135854203321 |
| New York, NY, : John Wiley & Sons | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics / / by Wei Cai
| Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics / / by Wei Cai |
| Autore | Cai Wei |
| Edizione | [2nd ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (931 pages) |
| Disciplina | 518 |
| Soggetto topico |
Numerical analysis
Differential equations Electrical engineering Machine learning Mathematics - Data processing Mathematical physics Numerical Analysis Differential Equations Electrical and Electronic Engineering Machine Learning Computational Mathematics and Numerical Analysis Theoretical, Mathematical and Computational Physics Anàlisi numèrica Equacions diferencials Enginyeria elèctrica Aprenentatge automàtic Processament de dades Física matemàtica Matemàtica discreta |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9789819601004 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Dielectric constant and fluctuation formulae for molecular dynamics -- Poisson–Boltzmann electrostatics and analytical approximations -- Numerical methods for Poisson–Boltzmann equations -- Random walk stochastic methods for boundary value problems -- Deep Neural Network for Solving PDEs -- Fast algorithms for long-range interactions -- Fast multipole methods for long-range interactions in layered media -- Maxwell equations, potentials, and physical/artificial boundary conditions -- Dyadic Green’s functions in layered media -- High-order methods for surface electromagnetic integral equations -- High-order hierarchical N´ed´elec edge elements -- Time-domain methods – discontinuous Galerkin method and Yee scheme -- Scattering in periodic structures and surface plasmons -- Schr¨ odinger equations for waveguides and quantum dots -- Quantum electron transport in semiconductors -- Non-equilibrium Green’s function (NEGF) methods for transport -- Numerical methods for Wigner quantum transport -- Hydrodynamic electron transport and finite difference methods -- Transport models in plasma media and numerical methods. |
| Record Nr. | UNINA-9910984695703321 |
Cai Wei
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||