top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu
Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu
Autore Popescu Sever Angel
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (833 pages)
Disciplina 620.00151
Soggetto topico Mathematical analysis
Probabilities
Mathematical optimization
Calculus of variations
Differential equations
Analysis
Probability Theory
Calculus of Variations and Optimization
Differential Equations
Matemàtica per a enginyers
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-21502-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises.
8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space.
11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index.
Record Nr. UNISA-996508570903316
Popescu Sever Angel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu
Autore Popescu Sever Angel
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (833 pages)
Disciplina 620.00151
Soggetto topico Mathematical analysis
Probabilities
Mathematical optimization
Calculus of variations
Differential equations
Analysis
Probability Theory
Calculus of Variations and Optimization
Differential Equations
Matemàtica per a enginyers
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-21502-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises.
8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space.
11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index.
Record Nr. UNINA-9910647396803321
Popescu Sever Angel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
Autore Kunze Markus <1967->
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (X, 206 p. 3 illus., 1 illus. in color.)
Disciplina 523.112
Collana Progress in mathematical physics
Soggetto topico Galactic dynamics
Física matemàtica
Teoria quàntica
Astrofísica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-75186-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory.
Record Nr. UNISA-996466406303316
Kunze Markus <1967->  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze
Autore Kunze Markus <1967->
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (X, 206 p. 3 illus., 1 illus. in color.)
Disciplina 523.112
Collana Progress in mathematical physics
Soggetto topico Galactic dynamics
Física matemàtica
Teoria quàntica
Astrofísica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-75186-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory.
Record Nr. UNINA-9910495224403321
Kunze Markus <1967->  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (324 pages)
Disciplina 780
Soggetto topico Mathematics
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-17523-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- 1 Frank Yang at Stony Brook and the Beginning of Supergravity -- 1.1 Prologue -- 1.2 Frank Before Coming to Stony Brook -- 1.3 Early Years of Frank at Stony Brook -- 1.4 Supersymmetry and Quantum Gravity Before 1976 -- 1.5 Some Recollections of the Path to Supergravity at Stony Brook -- 1.6 Supergravity Lives! -- 1.7 Epilogue -- 1.8 Later Years of Frank at Stony Brook -- References -- 2 A Stacky Approach to Crystals -- 2.1 Introduction -- 2.1.1 A Theorem of Bhatt-Morrow-Scholze -- 2.1.2 A Generalization -- 2.1.3 Isocrystals -- 2.1.3.1 What We Mean by an Isocrystal -- 2.1.3.2 The Result on Isocrystals -- 2.1.3.3 ``Banachian Games'' and `3́9`42`"̇613A``45`47`"603ABunQ -- 2.2 Crystals and Crystalline Cohomology -- 2.2.1 A Class of Schemes -- 2.2.2 Some Simplicial Formal Schemes -- 2.2.2.1 The Simplicial Scheme P -- 2.2.2.2 The Simplicial Formal Scheme F -- 2.2.2.3 The Simplicial Formal Scheme A -- 2.2.3 Notation and Terminology Related to Quasi-Coherent Sheaves -- 2.2.3.1 p-adic Formal Schemes and Stacks -- 2.2.3.2 The Notation QCoh (Y) -- 2.2.3.3 Zp-Flatness -- 2.2.3.4 Finite Generation -- 2.2.3.5 Cohomology -- 2.2.3.6 Equivariant Objects -- 2.2.3.7 Objects of QCoh (Y ) as Sheaves -- 2.2.3.8 Proof of (2.2) -- 2.2.4 Formulation of the Results -- 2.2.4.1 Convention -- 2.2.5 Proof of Theorem 2.1(i) -- 2.2.5.1 The Simplicial Formal Scheme X -- 2.2.5.2 End of the Proof -- 2.2.6 Proof of Theorem 2.1(ii) -- 2.2.6.1 General Remark -- 2.2.6.2 The Functor in One Direction -- 2.2.6.3 Factorizing the Functor (2.8) -- 2.2.7 Proof of Theorem 2.1(iii) -- 2.2.7.1 General Remark -- 2.2.7.2 The Map in One Direction -- 2.2.7.3 End of the Proof -- 2.2.8 H0`3́9`42`"̇613A``45`47`"603Acris(X,O) and the Ring of Constants -- 2.2.8.1 The Ring of Constants -- 2.3 Isocrystals -- 2.3.1 A Class of Schemes.
2.3.1.1 The Ring of Constants -- 2.3.2 Coherent Crystals and Isocrystals -- 2.3.3 Local Projectivity -- 2.3.4 Proof of Proposition 2.4 -- 2.3.4.1 Strategy -- 2.3.5 Isocrystals as Vector Bundles -- 2.3.5.1 The Category `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.2 Flat Descent for `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.3 Equivariant Objects of `3́9`42`"̇613A``45`47`"603ABunQ(Y) -- 2.3.6 Banachian Games -- 2.3.6.1 One of the Goals -- 2.3.6.2 Proof of Theorem 2.2 -- 2.3.7 Proof of Propositions 2.5 and 2.6 -- Appendix -- The Isomorphism Between W(X`3́9`42`"̇613A``45`47`"603Aperf)/G and the Prismatization of X -- The Goal -- Prismatization of Semiperfect Fp-Schemes -- Perfect Case -- General Case -- The Morphism W(X`3́9`42`"̇613A``45`47`"603Aperf)`3́9`42`"̇613A``45`47`"603AWCartX -- The Čech Nerve of (2.30) -- References -- 3 The Potts Model, the Jones Polynomial and Link Homology -- 3.1 Introduction -- 3.2 Bracket Polynomial and Jones Polynomial -- 3.3 Khovanov Homology and the Cube Category -- 3.4 The Dichromatic Polynomial and the Potts Model -- 3.5 Khovanov Homology -- 3.6 Homology and the Potts Model -- 3.7 The Potts Model and Stosic's Categorification of the Dichromatic Polynomial -- 3.8 Imaginary Temperature, Real Time and Quantum Statistics -- References -- 4 The Penrose-Onsager-Yang Approach to Superconductivity and Superfluidity -- 4.1 Quantum Condensation: The Onsager-Penrose-Yang Approach -- 4.2 Some Considerations and Questions Raised by the Content of Sect.4.1 -- 4.3 What Is Special About Quantum Condensates? -- 4.4 Why Is Nature So Fond of ``Simple'' Quantum Condensation? Why Is ``Fragmentation'' So Rare? -- 4.5 When Does Fragmentation Occur? -- 4.6 Alternative Approaches to Quantum Condensation: Some Problems -- 4.6.1 ODLRO -- 4.6.2 Anomalous Averages -- 4.6.3 ``Spontaneously Broken U(1) Symmetry'' -- References.
5 Quantum Operads -- 5.1 Introduction and Brief Survey -- 5.2 Quantum Structures in Symmetric Monoidal Categories -- 5.2.1 Monoidal (=Tensor) Categories V (Sm16, Sec. 2.2, 2.3) -- 5.2.2 Symmetric Monoidal Categories -- 5.2.3 Magmas, Comagmas, Bimagmas, Associativity and Commutativity for (co, bi)magmas in Symmetric Monoidal Categories (Sm16, Sec. 2.4) -- 5.2.4 Monoids, Comonoids, Bimonoids, and Hopf Algebras in Symmetric MonoIdal Categories (Sm16, Def. 2.7) -- 5.2.5 Quantum Quasigroups (Sm16, Sec. 3.1) -- 5.2.6 Quantum Loops -- 5.2.7 Functoriality (Sm16, Prop. 3.4) -- 5.2.8 Magmas etc. in the Categories of Sets with Direct Product -- 5.3 Monoidal Categories of Operads -- 5.3.1 Graphs and Their Categories -- 5.3.2 Operads and Categories of Operads (See BoMa08, Sec. 1.6, p. 262) -- 5.3.3 Operads and Collections as Symmetric Monoidal Categories -- 5.3.4 Operads as Monoids -- 5.3.4.1 Freely Generated Operads -- 5.3.5 Comonoids in Operadic Setup -- 5.3.6 The Magmatic Operad (See ChCorGi19) -- 5.3.7 Quasigroup Monomials and Planar Trees -- 5.4 Moufang Loops and Operads -- 5.4.1 Moufang Monomials and Their Encoding by Labeled Graphs -- 5.4.2 Passage to Moufang Operad: Basic Identity -- 5.4.3 Moufang Collections (See BoMa08, Sec. 1.5, pp. 259-261) -- 5.4.4 Latin Square Designs and Their Encoding by Graphs -- 5.4.4.1 Simplest Examples -- 5.4.5 From Loops to Latin Square Designs -- 5.5 Operadic Structures on Quantum States -- 5.5.1 Operads of Classical and Quantum Probabilities -- 5.5.1.1 Averages as an Algebra Over the Operad P -- 5.5.1.2 A∞-Operad and Entropy -- 5.5.2 Classical Probabilities from Quantum States -- 5.5.3 Non-unital Operads -- 5.5.4 The QP-Operad of Quantum States -- 5.5.5 The Q-Operad of Quantum States -- 5.5.6 Trees of Projective Quantum Measurements -- 5.5.7 Entropy Functionals -- 5.5.8 A∞-Operad of Quantum Channels.
5.6 Operads and Almost-Symplectic Quantum Codes -- 5.6.1 Rational and Binary Little Square Operads -- 5.6.1.1 Binary Little Square Operad -- 5.6.1.2 Strict Binary Little Squares -- 5.6.2 Binary Little Square Operads and Almost Symplectic Spaces -- 5.6.3 Colored p-ary Little Squares -- 5.6.3.1 Operads and Almost-Symplectic Structures Over Fp -- 5.6.4 Operad Partial-Action on Quantum Codes -- References -- 6 Quantum Computational Complexity with Photons and Linear Optics -- 6.1 Introduction -- 6.2 The Mathematics: Permanent and Hafnian -- 6.2.1 Permanent -- 6.2.2 Hafnian -- 6.3 The Model: Boson Sampling -- 6.4 Single-Photon Boson Sampling Experiments -- 6.5 Quantum Computational Advantage with Jiuzhang -- 6.6 Applications -- References -- 7 Quantized Twistors, G2*, and the Split Octonions -- 7.1 A Key Motivation for the Formulation of Twistor Theory -- 7.2 The 2-Spinor Formalism -- 7.3 Projective Twistor Space -- 7.4 Twistor Kinematics -- 7.5 Quantized Twistor Theory and Masless Fields -- 7.6 Split Octonions and G2* -- References -- 8 Kronecker Anomalies and Gravitational Striction -- 8.1 Introduction and General Discussion -- 8.2 Kronecker Anomaly in Thermal Harmonic Oscillator -- Appendix -- Kronecker Anomaly in Electromagnetic Theory -- Mathematical Aspects of Kronecker Anomaly -- Two Dimensional Scalar Electrodynamics on a Torus -- Kronecker Anomaly in Spaces with Constant Curvature -- Absence of Kronecker Anomalies in Even Dimensional de Sitter Spaces -- De Sitter Lacuna -- References -- 9 Projecting Local and Global Symmetries to the Planck Scale -- 9.1 Introduction -- 9.2 Quantum Mechanics -- 9.3 Classical Models Underlying Quantum Mechanics -- 9.4 The Standard Model -- References -- 10 Gauge Symmetry in Shape Dynamics -- 10.1 Gauge Structure: Fundamental, Emergent, Productive -- 10.2 Dynamical Equation for Deformable Bodies.
10.2.1 Referenced Angular Momentum -- 10.2.2 Inertia Tensor and Angular Motion -- 10.2.3 Gauge Symmetry and Gauge Field -- 10.2.4 Dynamical Equation -- 10.2.5 Three Dimensional Notation -- 10.2.6 Specializations -- 10.2.7 Angular Momentum and Energy -- 10.3 Extensions -- 10.3.1 Blobs, Media, and Swarms -- 10.3.2 Molecules and Nuclei -- Appendix -- Direct Calculation -- References -- 11 Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit? -- 11.1 Introduction -- 11.2 Quantum Field Theory in Curved Spacetime -- 11.2.1 The Problem -- 11.2.2 Practicing with a Spin System -- 11.2.3 A System of Harmonic Oscillators -- 11.2.4 Back to Field Theory -- 11.2.5 What Is Quantum Field Theory in an Open Universe? -- 11.2.6 Non-Free Theories -- 11.3 Quantum Statistical Mechanics and the Thermodynamic Limit -- 11.3.1 The Thermofield Double -- 11.3.2 Surprises in the Thermodynamic Limit -- 11.3.3 Examples from Spin Systems -- 11.3.4 Relation to Quantum Field Theory -- 11.3.5 The Hagedorn Temperature -- 11.3.6 Density Matrices and Entropy -- 11.4 The Large N Limit and the Thermofield Double -- References -- 12 Quantum Anomalous Hall Effect -- 13 Magic Superconducting States in Cuprates -- References.
Record Nr. UNISA-996503551503316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (324 pages)
Disciplina 780
Soggetto topico Mathematics
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-17523-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- 1 Frank Yang at Stony Brook and the Beginning of Supergravity -- 1.1 Prologue -- 1.2 Frank Before Coming to Stony Brook -- 1.3 Early Years of Frank at Stony Brook -- 1.4 Supersymmetry and Quantum Gravity Before 1976 -- 1.5 Some Recollections of the Path to Supergravity at Stony Brook -- 1.6 Supergravity Lives! -- 1.7 Epilogue -- 1.8 Later Years of Frank at Stony Brook -- References -- 2 A Stacky Approach to Crystals -- 2.1 Introduction -- 2.1.1 A Theorem of Bhatt-Morrow-Scholze -- 2.1.2 A Generalization -- 2.1.3 Isocrystals -- 2.1.3.1 What We Mean by an Isocrystal -- 2.1.3.2 The Result on Isocrystals -- 2.1.3.3 ``Banachian Games'' and `3́9`42`"̇613A``45`47`"603ABunQ -- 2.2 Crystals and Crystalline Cohomology -- 2.2.1 A Class of Schemes -- 2.2.2 Some Simplicial Formal Schemes -- 2.2.2.1 The Simplicial Scheme P -- 2.2.2.2 The Simplicial Formal Scheme F -- 2.2.2.3 The Simplicial Formal Scheme A -- 2.2.3 Notation and Terminology Related to Quasi-Coherent Sheaves -- 2.2.3.1 p-adic Formal Schemes and Stacks -- 2.2.3.2 The Notation QCoh (Y) -- 2.2.3.3 Zp-Flatness -- 2.2.3.4 Finite Generation -- 2.2.3.5 Cohomology -- 2.2.3.6 Equivariant Objects -- 2.2.3.7 Objects of QCoh (Y ) as Sheaves -- 2.2.3.8 Proof of (2.2) -- 2.2.4 Formulation of the Results -- 2.2.4.1 Convention -- 2.2.5 Proof of Theorem 2.1(i) -- 2.2.5.1 The Simplicial Formal Scheme X -- 2.2.5.2 End of the Proof -- 2.2.6 Proof of Theorem 2.1(ii) -- 2.2.6.1 General Remark -- 2.2.6.2 The Functor in One Direction -- 2.2.6.3 Factorizing the Functor (2.8) -- 2.2.7 Proof of Theorem 2.1(iii) -- 2.2.7.1 General Remark -- 2.2.7.2 The Map in One Direction -- 2.2.7.3 End of the Proof -- 2.2.8 H0`3́9`42`"̇613A``45`47`"603Acris(X,O) and the Ring of Constants -- 2.2.8.1 The Ring of Constants -- 2.3 Isocrystals -- 2.3.1 A Class of Schemes.
2.3.1.1 The Ring of Constants -- 2.3.2 Coherent Crystals and Isocrystals -- 2.3.3 Local Projectivity -- 2.3.4 Proof of Proposition 2.4 -- 2.3.4.1 Strategy -- 2.3.5 Isocrystals as Vector Bundles -- 2.3.5.1 The Category `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.2 Flat Descent for `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.3 Equivariant Objects of `3́9`42`"̇613A``45`47`"603ABunQ(Y) -- 2.3.6 Banachian Games -- 2.3.6.1 One of the Goals -- 2.3.6.2 Proof of Theorem 2.2 -- 2.3.7 Proof of Propositions 2.5 and 2.6 -- Appendix -- The Isomorphism Between W(X`3́9`42`"̇613A``45`47`"603Aperf)/G and the Prismatization of X -- The Goal -- Prismatization of Semiperfect Fp-Schemes -- Perfect Case -- General Case -- The Morphism W(X`3́9`42`"̇613A``45`47`"603Aperf)`3́9`42`"̇613A``45`47`"603AWCartX -- The Čech Nerve of (2.30) -- References -- 3 The Potts Model, the Jones Polynomial and Link Homology -- 3.1 Introduction -- 3.2 Bracket Polynomial and Jones Polynomial -- 3.3 Khovanov Homology and the Cube Category -- 3.4 The Dichromatic Polynomial and the Potts Model -- 3.5 Khovanov Homology -- 3.6 Homology and the Potts Model -- 3.7 The Potts Model and Stosic's Categorification of the Dichromatic Polynomial -- 3.8 Imaginary Temperature, Real Time and Quantum Statistics -- References -- 4 The Penrose-Onsager-Yang Approach to Superconductivity and Superfluidity -- 4.1 Quantum Condensation: The Onsager-Penrose-Yang Approach -- 4.2 Some Considerations and Questions Raised by the Content of Sect.4.1 -- 4.3 What Is Special About Quantum Condensates? -- 4.4 Why Is Nature So Fond of ``Simple'' Quantum Condensation? Why Is ``Fragmentation'' So Rare? -- 4.5 When Does Fragmentation Occur? -- 4.6 Alternative Approaches to Quantum Condensation: Some Problems -- 4.6.1 ODLRO -- 4.6.2 Anomalous Averages -- 4.6.3 ``Spontaneously Broken U(1) Symmetry'' -- References.
5 Quantum Operads -- 5.1 Introduction and Brief Survey -- 5.2 Quantum Structures in Symmetric Monoidal Categories -- 5.2.1 Monoidal (=Tensor) Categories V (Sm16, Sec. 2.2, 2.3) -- 5.2.2 Symmetric Monoidal Categories -- 5.2.3 Magmas, Comagmas, Bimagmas, Associativity and Commutativity for (co, bi)magmas in Symmetric Monoidal Categories (Sm16, Sec. 2.4) -- 5.2.4 Monoids, Comonoids, Bimonoids, and Hopf Algebras in Symmetric MonoIdal Categories (Sm16, Def. 2.7) -- 5.2.5 Quantum Quasigroups (Sm16, Sec. 3.1) -- 5.2.6 Quantum Loops -- 5.2.7 Functoriality (Sm16, Prop. 3.4) -- 5.2.8 Magmas etc. in the Categories of Sets with Direct Product -- 5.3 Monoidal Categories of Operads -- 5.3.1 Graphs and Their Categories -- 5.3.2 Operads and Categories of Operads (See BoMa08, Sec. 1.6, p. 262) -- 5.3.3 Operads and Collections as Symmetric Monoidal Categories -- 5.3.4 Operads as Monoids -- 5.3.4.1 Freely Generated Operads -- 5.3.5 Comonoids in Operadic Setup -- 5.3.6 The Magmatic Operad (See ChCorGi19) -- 5.3.7 Quasigroup Monomials and Planar Trees -- 5.4 Moufang Loops and Operads -- 5.4.1 Moufang Monomials and Their Encoding by Labeled Graphs -- 5.4.2 Passage to Moufang Operad: Basic Identity -- 5.4.3 Moufang Collections (See BoMa08, Sec. 1.5, pp. 259-261) -- 5.4.4 Latin Square Designs and Their Encoding by Graphs -- 5.4.4.1 Simplest Examples -- 5.4.5 From Loops to Latin Square Designs -- 5.5 Operadic Structures on Quantum States -- 5.5.1 Operads of Classical and Quantum Probabilities -- 5.5.1.1 Averages as an Algebra Over the Operad P -- 5.5.1.2 A∞-Operad and Entropy -- 5.5.2 Classical Probabilities from Quantum States -- 5.5.3 Non-unital Operads -- 5.5.4 The QP-Operad of Quantum States -- 5.5.5 The Q-Operad of Quantum States -- 5.5.6 Trees of Projective Quantum Measurements -- 5.5.7 Entropy Functionals -- 5.5.8 A∞-Operad of Quantum Channels.
5.6 Operads and Almost-Symplectic Quantum Codes -- 5.6.1 Rational and Binary Little Square Operads -- 5.6.1.1 Binary Little Square Operad -- 5.6.1.2 Strict Binary Little Squares -- 5.6.2 Binary Little Square Operads and Almost Symplectic Spaces -- 5.6.3 Colored p-ary Little Squares -- 5.6.3.1 Operads and Almost-Symplectic Structures Over Fp -- 5.6.4 Operad Partial-Action on Quantum Codes -- References -- 6 Quantum Computational Complexity with Photons and Linear Optics -- 6.1 Introduction -- 6.2 The Mathematics: Permanent and Hafnian -- 6.2.1 Permanent -- 6.2.2 Hafnian -- 6.3 The Model: Boson Sampling -- 6.4 Single-Photon Boson Sampling Experiments -- 6.5 Quantum Computational Advantage with Jiuzhang -- 6.6 Applications -- References -- 7 Quantized Twistors, G2*, and the Split Octonions -- 7.1 A Key Motivation for the Formulation of Twistor Theory -- 7.2 The 2-Spinor Formalism -- 7.3 Projective Twistor Space -- 7.4 Twistor Kinematics -- 7.5 Quantized Twistor Theory and Masless Fields -- 7.6 Split Octonions and G2* -- References -- 8 Kronecker Anomalies and Gravitational Striction -- 8.1 Introduction and General Discussion -- 8.2 Kronecker Anomaly in Thermal Harmonic Oscillator -- Appendix -- Kronecker Anomaly in Electromagnetic Theory -- Mathematical Aspects of Kronecker Anomaly -- Two Dimensional Scalar Electrodynamics on a Torus -- Kronecker Anomaly in Spaces with Constant Curvature -- Absence of Kronecker Anomalies in Even Dimensional de Sitter Spaces -- De Sitter Lacuna -- References -- 9 Projecting Local and Global Symmetries to the Planck Scale -- 9.1 Introduction -- 9.2 Quantum Mechanics -- 9.3 Classical Models Underlying Quantum Mechanics -- 9.4 The Standard Model -- References -- 10 Gauge Symmetry in Shape Dynamics -- 10.1 Gauge Structure: Fundamental, Emergent, Productive -- 10.2 Dynamical Equation for Deformable Bodies.
10.2.1 Referenced Angular Momentum -- 10.2.2 Inertia Tensor and Angular Motion -- 10.2.3 Gauge Symmetry and Gauge Field -- 10.2.4 Dynamical Equation -- 10.2.5 Three Dimensional Notation -- 10.2.6 Specializations -- 10.2.7 Angular Momentum and Energy -- 10.3 Extensions -- 10.3.1 Blobs, Media, and Swarms -- 10.3.2 Molecules and Nuclei -- Appendix -- Direct Calculation -- References -- 11 Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit? -- 11.1 Introduction -- 11.2 Quantum Field Theory in Curved Spacetime -- 11.2.1 The Problem -- 11.2.2 Practicing with a Spin System -- 11.2.3 A System of Harmonic Oscillators -- 11.2.4 Back to Field Theory -- 11.2.5 What Is Quantum Field Theory in an Open Universe? -- 11.2.6 Non-Free Theories -- 11.3 Quantum Statistical Mechanics and the Thermodynamic Limit -- 11.3.1 The Thermofield Double -- 11.3.2 Surprises in the Thermodynamic Limit -- 11.3.3 Examples from Spin Systems -- 11.3.4 Relation to Quantum Field Theory -- 11.3.5 The Hagedorn Temperature -- 11.3.6 Density Matrices and Entropy -- 11.4 The Large N Limit and the Thermofield Double -- References -- 12 Quantum Anomalous Hall Effect -- 13 Magic Superconducting States in Cuprates -- References.
Record Nr. UNINA-9910634035903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski
Autore Sarti Alessandro
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (222 pages)
Disciplina 516.36
Collana Lecture Notes in Morphogenesis
Soggetto topico Geometry, Differential
Geometria diferencial
Generació espontània
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-97797-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 The Problematic Dimension of Becoming -- 1.2 From Structuralism to Post-structural Dynamics -- 1.3 The Weakening of Differential Constraints -- 1.4 Heterogenetic Morphodynamics -- 1.5 The Empirical Basins of Heterogenesis -- 1.6 The Emergence of Semiosis -- 1.7 Semiolinguistics -- 1.8 Towards an Extended Imaginative Plane -- 1.9 Organization of the Volume -- References -- 2 Elements of Morphodynamics -- 2.1 Individuation -- 2.1.1 Differential Becoming -- 2.2 Singularities -- 2.2.1 Poincaré Singularities -- 2.3 Structural Morphodynamics -- 2.3.1 Degenerate Critical Points and Thom's Catastrophe Theory -- 2.3.2 Dynamizing Saussure, Greimas, and Lévi-Strauss -- References -- 3 Multiplicity and Assemblages -- 3.1 Multiplicity -- 3.2 Riemannian Geometry -- 3.2.1 Manifolds -- 3.2.2 Charts -- 3.2.3 Atlas and Smooth Manifolds -- 3.2.4 The Tangent Plane at a Point -- 3.2.5 Metrics and Striated Manifolds -- 3.3 The Plane of Composition -- 3.4 Assemblages -- 3.5 Rhizomes -- 3.6 Machines -- 3.7 Towards New Geometries and Dynamics -- References -- 4 Differential Heterogenesis -- 4.1 Discussing Homogenesis -- 4.1.1 Geometric and Dynamic Heterogeneity -- 4.1.2 Beyond Mathematical Physics -- 4.1.3 Khronos and Aion -- 4.1.4 Mathematical Constructivism and Historical Contingency -- 4.1.5 Living and Perceptual Mutations -- 4.1.6 Negative Results -- 4.1.7 Against Homogenesis -- 4.2 Sub-Riemannian Geometric Multiplicity -- 4.2.1 Beyond Riemannian Geometry -- 4.2.2 Tangent Space and Admissible Tangent Space -- 4.2.3 Sub-Riemannian Manifolds and Vector Fields -- 4.2.4 Non-Commuting Vector Fields and Uncertainty Principle -- 4.2.5 The Sub-Riemannian Metric -- 4.2.6 The Connectivity Problem -- 4.2.7 Lifting the Geometry of the Space -- 4.3 Heterogeneous Dynamic Multiplicity -- 4.3.1 Differential Operators.
4.3.2 Sub-Riemannian Flows. Homogeneous Operators in an Heterogeneous Geometry -- 4.3.3 Heterogeneous Operators -- 4.3.4 Operators as Shapes -- 4.3.5 Lifting of Operators -- 4.4 Geometric and Dynamic Assemblages -- 4.4.1 Dynamic and Geometrical Lifting of a Multiplicity of Operators -- 4.4.2 Extension of the Operator Via Partition of the Unit -- 4.4.3 Heterogeneous Assemblage -- 4.4.4 Curve in the Space of Operators and Metamorphosis of Operators -- 4.5 The Heterogenetic Flow and Its Vibrational Modes: Plateaus -- 4.6 Multiplicity of Multiplicities -- References -- 5 Differential Cognitive Neuroscience -- 5.1 Neuromagma -- 5.2 Structures, Assemblages, and Plateaus of the Neuromagma -- 5.2.1 Neurogeometry -- 5.2.2 Operator Kernels -- 5.2.3 Brain Activity and Plateaus -- 5.2.4 Plateaus I: The Formemes of Plastic Forms -- 5.2.5 Plateaus II: Perceptual Grouping -- 5.2.6 Plateaus III: Hallucinations -- 5.3 Strata: Modal and Amodal Completion -- 5.4 Composition-Actualization of Percepts -- 5.4.1 The Four Stages of the Constitution of Plastic Morphologies -- 5.5 Embodied, Embedded, Enactive, Extended Cognition -- 5.5.1 Embodied Plasticity: Saliences and Pregnancies -- 5.5.2 Extended Cognition -- 5.6 Imagination and Insight -- 5.7 Metamorphosis -- References -- 6 Expression and Semiogenesis -- 6.1 Problematic Landscape -- 6.2 The Problem of Expression -- 6.2.1 The Expressive Phenomenon -- 6.2.2 A Community of Views -- 6.2.3 Shared Difficulties -- 6.2.4 The Semiotic Function -- 6.2.5 Saussure -- 6.2.6 Hjelmslev -- 6.2.7 Husserl -- 6.2.8 Discussion -- 6.2.9 Peirce -- 6.2.10 Eco/Hjelmslev -- 6.2.11 Eco/Peirce -- 6.2.12 Fontanille -- 6.2.13 Conclusion -- 6.3 The Merleau-Pontian Solution: Toward Heterogenesis -- 6.3.1 The Problem of Solicitations -- 6.3.2 The Elaboration of Stimuli -- 6.3.3 Concrete/Abstract -- 6.3.4 Interior Relationships.
6.3.5 Transition and Conjectures -- 6.3.6 Solicitations -- 6.3.7 Heterogenesis: From Sollicitation to Cosubstantiality -- 6.4 A Convergent Argument -- 6.4.1 Overview -- 6.4.2 From Expression to Speech: The Problem -- 6.4.3 From Speech as Gesture to the First Speech -- 6.4.4 The Differential Foundation of the First Speech -- 6.4.5 From Expression to Speech: Outline of a Heterogenetic Solution -- 6.5 A Necessary Overreach -- 6.5.1 Recalls -- 6.5.2 Problematical Opening -- 6.6 Inner Relations: Problems and Possible Solution -- 6.6.1 Problems -- 6.6.2 Possible Solution -- 6.7 On the Constitution of the Sign -- 6.7.1 Morphodynamics of the Saussurean Sign -- 6.7.2 The Autotransgression of the Semiotic -- 6.7.3 Conclusion -- References -- 7 Chiusa: Morphodynamic Poetry -- 7.1 Individuation Between Potency and Form -- 7.2 Disentaglement: Composition Versus Maximization -- 7.3 Mutant Sensibilities -- 7.4 The Letter of the Seer -- References -- 8 Plates -- Subject Index -- Author Index.
Record Nr. UNISA-996483154703316
Sarti Alessandro  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski
Autore Sarti Alessandro
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (222 pages)
Disciplina 516.36
Collana Lecture Notes in Morphogenesis
Soggetto topico Geometry, Differential
Geometria diferencial
Generació espontània
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-97797-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 The Problematic Dimension of Becoming -- 1.2 From Structuralism to Post-structural Dynamics -- 1.3 The Weakening of Differential Constraints -- 1.4 Heterogenetic Morphodynamics -- 1.5 The Empirical Basins of Heterogenesis -- 1.6 The Emergence of Semiosis -- 1.7 Semiolinguistics -- 1.8 Towards an Extended Imaginative Plane -- 1.9 Organization of the Volume -- References -- 2 Elements of Morphodynamics -- 2.1 Individuation -- 2.1.1 Differential Becoming -- 2.2 Singularities -- 2.2.1 Poincaré Singularities -- 2.3 Structural Morphodynamics -- 2.3.1 Degenerate Critical Points and Thom's Catastrophe Theory -- 2.3.2 Dynamizing Saussure, Greimas, and Lévi-Strauss -- References -- 3 Multiplicity and Assemblages -- 3.1 Multiplicity -- 3.2 Riemannian Geometry -- 3.2.1 Manifolds -- 3.2.2 Charts -- 3.2.3 Atlas and Smooth Manifolds -- 3.2.4 The Tangent Plane at a Point -- 3.2.5 Metrics and Striated Manifolds -- 3.3 The Plane of Composition -- 3.4 Assemblages -- 3.5 Rhizomes -- 3.6 Machines -- 3.7 Towards New Geometries and Dynamics -- References -- 4 Differential Heterogenesis -- 4.1 Discussing Homogenesis -- 4.1.1 Geometric and Dynamic Heterogeneity -- 4.1.2 Beyond Mathematical Physics -- 4.1.3 Khronos and Aion -- 4.1.4 Mathematical Constructivism and Historical Contingency -- 4.1.5 Living and Perceptual Mutations -- 4.1.6 Negative Results -- 4.1.7 Against Homogenesis -- 4.2 Sub-Riemannian Geometric Multiplicity -- 4.2.1 Beyond Riemannian Geometry -- 4.2.2 Tangent Space and Admissible Tangent Space -- 4.2.3 Sub-Riemannian Manifolds and Vector Fields -- 4.2.4 Non-Commuting Vector Fields and Uncertainty Principle -- 4.2.5 The Sub-Riemannian Metric -- 4.2.6 The Connectivity Problem -- 4.2.7 Lifting the Geometry of the Space -- 4.3 Heterogeneous Dynamic Multiplicity -- 4.3.1 Differential Operators.
4.3.2 Sub-Riemannian Flows. Homogeneous Operators in an Heterogeneous Geometry -- 4.3.3 Heterogeneous Operators -- 4.3.4 Operators as Shapes -- 4.3.5 Lifting of Operators -- 4.4 Geometric and Dynamic Assemblages -- 4.4.1 Dynamic and Geometrical Lifting of a Multiplicity of Operators -- 4.4.2 Extension of the Operator Via Partition of the Unit -- 4.4.3 Heterogeneous Assemblage -- 4.4.4 Curve in the Space of Operators and Metamorphosis of Operators -- 4.5 The Heterogenetic Flow and Its Vibrational Modes: Plateaus -- 4.6 Multiplicity of Multiplicities -- References -- 5 Differential Cognitive Neuroscience -- 5.1 Neuromagma -- 5.2 Structures, Assemblages, and Plateaus of the Neuromagma -- 5.2.1 Neurogeometry -- 5.2.2 Operator Kernels -- 5.2.3 Brain Activity and Plateaus -- 5.2.4 Plateaus I: The Formemes of Plastic Forms -- 5.2.5 Plateaus II: Perceptual Grouping -- 5.2.6 Plateaus III: Hallucinations -- 5.3 Strata: Modal and Amodal Completion -- 5.4 Composition-Actualization of Percepts -- 5.4.1 The Four Stages of the Constitution of Plastic Morphologies -- 5.5 Embodied, Embedded, Enactive, Extended Cognition -- 5.5.1 Embodied Plasticity: Saliences and Pregnancies -- 5.5.2 Extended Cognition -- 5.6 Imagination and Insight -- 5.7 Metamorphosis -- References -- 6 Expression and Semiogenesis -- 6.1 Problematic Landscape -- 6.2 The Problem of Expression -- 6.2.1 The Expressive Phenomenon -- 6.2.2 A Community of Views -- 6.2.3 Shared Difficulties -- 6.2.4 The Semiotic Function -- 6.2.5 Saussure -- 6.2.6 Hjelmslev -- 6.2.7 Husserl -- 6.2.8 Discussion -- 6.2.9 Peirce -- 6.2.10 Eco/Hjelmslev -- 6.2.11 Eco/Peirce -- 6.2.12 Fontanille -- 6.2.13 Conclusion -- 6.3 The Merleau-Pontian Solution: Toward Heterogenesis -- 6.3.1 The Problem of Solicitations -- 6.3.2 The Elaboration of Stimuli -- 6.3.3 Concrete/Abstract -- 6.3.4 Interior Relationships.
6.3.5 Transition and Conjectures -- 6.3.6 Solicitations -- 6.3.7 Heterogenesis: From Sollicitation to Cosubstantiality -- 6.4 A Convergent Argument -- 6.4.1 Overview -- 6.4.2 From Expression to Speech: The Problem -- 6.4.3 From Speech as Gesture to the First Speech -- 6.4.4 The Differential Foundation of the First Speech -- 6.4.5 From Expression to Speech: Outline of a Heterogenetic Solution -- 6.5 A Necessary Overreach -- 6.5.1 Recalls -- 6.5.2 Problematical Opening -- 6.6 Inner Relations: Problems and Possible Solution -- 6.6.1 Problems -- 6.6.2 Possible Solution -- 6.7 On the Constitution of the Sign -- 6.7.1 Morphodynamics of the Saussurean Sign -- 6.7.2 The Autotransgression of the Semiotic -- 6.7.3 Conclusion -- References -- 7 Chiusa: Morphodynamic Poetry -- 7.1 Individuation Between Potency and Form -- 7.2 Disentaglement: Composition Versus Maximization -- 7.3 Mutant Sensibilities -- 7.4 The Letter of the Seer -- References -- 8 Plates -- Subject Index -- Author Index.
Record Nr. UNINA-9910584478703321
Sarti Alessandro  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Equations of Mathematical Physics : Generalized Functions and Historical Notes / / by A. S. Demidov
Equations of Mathematical Physics : Generalized Functions and Historical Notes / / by A. S. Demidov
Autore Demidov A. S
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (260 pages)
Disciplina 530.15
Soggetto topico Functional analysis
Mathematical physics
Functional Analysis
Mathematical Physics
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-30358-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction. - Introduction to problems of mathmatical physics -- The spaces D♭, D♯ and D′. Elements of the distribution theory. - Pseudodifferential operators and Fourier operators. - New approach to the theory of generalized functions (Yu.V. Egorov). - Algebras of mnemonic functions (A. B. Antonevich) -- Extensions first-order partial differential operators (S.N. Samborskii). - References-. Index.
Record Nr. UNINA-9910734837103321
Demidov A. S  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Excel 2019 for physical sciences statistics : a guide to solving practical problems / / Thomas J. Quirk, Meghan H. Quirk, Howard F. Horton
Excel 2019 for physical sciences statistics : a guide to solving practical problems / / Thomas J. Quirk, Meghan H. Quirk, Howard F. Horton
Autore Quirk Thomas J.
Edizione [2nd ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIX, 242 p. 166 illus., 161 illus. in color.)
Disciplina 519.5
Collana Excel for Statistics
Soggetto topico Statistics
Mathematical physics
Application software
Estadística
Física matemàtica
Programari d'aplicació
Soggetto genere / forma Llibres electrònics
ISBN 3-030-63238-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgements -- 1 Sample Size, Mean, Standard Deviation, and Standard Error of the Mean -- 2 Random Number Generator -- 3 Confidence Interval About the Mean Using the TINV Function and Hypothesis Testing -- 4 One-Group t-Test for the Mean -- 5 Two-Group t-Test of the Difference of the Means for Independent Groups -- 6 Correlation and Simple Linear Regression -- 7 Multiple Correlation and Multiple Regression -- 8 One-Way Analysis of Variance (ANOVA) -- Appendix A: Answers to End-of-Chapter Practice Problems -- Appendix B: Practice Test -- Appendix C: Answers to Practice Test -- Appendix D: Statistical Formulas -- Appendix E: t-table -- Index.
Record Nr. UNISA-996466556103316
Quirk Thomas J.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui