Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNISA-996508570903316 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNINA-9910647396803321 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze |
Autore | Kunze Markus <1967-> |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
Descrizione fisica | 1 online resource (X, 206 p. 3 illus., 1 illus. in color.) |
Disciplina | 523.112 |
Collana | Progress in mathematical physics |
Soggetto topico |
Galactic dynamics
Física matemàtica Teoria quàntica Astrofísica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-75186-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory. |
Record Nr. | UNISA-996466406303316 |
Kunze Markus <1967->
![]() |
||
Cham, Switzerland : , : Birkhäuser, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
A Birman-Schwinger principle in galactic dynamics / / Markus Kunze |
Autore | Kunze Markus <1967-> |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
Descrizione fisica | 1 online resource (X, 206 p. 3 illus., 1 illus. in color.) |
Disciplina | 523.112 |
Collana | Progress in mathematical physics |
Soggetto topico |
Galactic dynamics
Física matemàtica Teoria quàntica Astrofísica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-75186-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Introduction -- The Antonov Stability Estimate -- On the Period Function $T_1$ -- A Birman-Schwinger Type Operator -- Relation to the Guo-Lin Operator -- Invariances -- Appendix I: Spherical Symmetry and Action-Angle Variables -- Appendix II: Function Spaces and Operators -- Appendix III: An Evolution Equation -- Appendix IV: On Kato-Rellich Perturbation Theory. |
Record Nr. | UNINA-9910495224403321 |
Kunze Markus <1967->
![]() |
||
Cham, Switzerland : , : Birkhäuser, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (324 pages) |
Disciplina | 780 |
Soggetto topico |
Mathematics
Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-17523-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- 1 Frank Yang at Stony Brook and the Beginning of Supergravity -- 1.1 Prologue -- 1.2 Frank Before Coming to Stony Brook -- 1.3 Early Years of Frank at Stony Brook -- 1.4 Supersymmetry and Quantum Gravity Before 1976 -- 1.5 Some Recollections of the Path to Supergravity at Stony Brook -- 1.6 Supergravity Lives! -- 1.7 Epilogue -- 1.8 Later Years of Frank at Stony Brook -- References -- 2 A Stacky Approach to Crystals -- 2.1 Introduction -- 2.1.1 A Theorem of Bhatt-Morrow-Scholze -- 2.1.2 A Generalization -- 2.1.3 Isocrystals -- 2.1.3.1 What We Mean by an Isocrystal -- 2.1.3.2 The Result on Isocrystals -- 2.1.3.3 ``Banachian Games'' and `3́9`42`"̇613A``45`47`"603ABunQ -- 2.2 Crystals and Crystalline Cohomology -- 2.2.1 A Class of Schemes -- 2.2.2 Some Simplicial Formal Schemes -- 2.2.2.1 The Simplicial Scheme P -- 2.2.2.2 The Simplicial Formal Scheme F -- 2.2.2.3 The Simplicial Formal Scheme A -- 2.2.3 Notation and Terminology Related to Quasi-Coherent Sheaves -- 2.2.3.1 p-adic Formal Schemes and Stacks -- 2.2.3.2 The Notation QCoh (Y) -- 2.2.3.3 Zp-Flatness -- 2.2.3.4 Finite Generation -- 2.2.3.5 Cohomology -- 2.2.3.6 Equivariant Objects -- 2.2.3.7 Objects of QCoh (Y ) as Sheaves -- 2.2.3.8 Proof of (2.2) -- 2.2.4 Formulation of the Results -- 2.2.4.1 Convention -- 2.2.5 Proof of Theorem 2.1(i) -- 2.2.5.1 The Simplicial Formal Scheme X -- 2.2.5.2 End of the Proof -- 2.2.6 Proof of Theorem 2.1(ii) -- 2.2.6.1 General Remark -- 2.2.6.2 The Functor in One Direction -- 2.2.6.3 Factorizing the Functor (2.8) -- 2.2.7 Proof of Theorem 2.1(iii) -- 2.2.7.1 General Remark -- 2.2.7.2 The Map in One Direction -- 2.2.7.3 End of the Proof -- 2.2.8 H0`3́9`42`"̇613A``45`47`"603Acris(X,O) and the Ring of Constants -- 2.2.8.1 The Ring of Constants -- 2.3 Isocrystals -- 2.3.1 A Class of Schemes.
2.3.1.1 The Ring of Constants -- 2.3.2 Coherent Crystals and Isocrystals -- 2.3.3 Local Projectivity -- 2.3.4 Proof of Proposition 2.4 -- 2.3.4.1 Strategy -- 2.3.5 Isocrystals as Vector Bundles -- 2.3.5.1 The Category `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.2 Flat Descent for `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.3 Equivariant Objects of `3́9`42`"̇613A``45`47`"603ABunQ(Y) -- 2.3.6 Banachian Games -- 2.3.6.1 One of the Goals -- 2.3.6.2 Proof of Theorem 2.2 -- 2.3.7 Proof of Propositions 2.5 and 2.6 -- Appendix -- The Isomorphism Between W(X`3́9`42`"̇613A``45`47`"603Aperf)/G and the Prismatization of X -- The Goal -- Prismatization of Semiperfect Fp-Schemes -- Perfect Case -- General Case -- The Morphism W(X`3́9`42`"̇613A``45`47`"603Aperf)`3́9`42`"̇613A``45`47`"603AWCartX -- The Čech Nerve of (2.30) -- References -- 3 The Potts Model, the Jones Polynomial and Link Homology -- 3.1 Introduction -- 3.2 Bracket Polynomial and Jones Polynomial -- 3.3 Khovanov Homology and the Cube Category -- 3.4 The Dichromatic Polynomial and the Potts Model -- 3.5 Khovanov Homology -- 3.6 Homology and the Potts Model -- 3.7 The Potts Model and Stosic's Categorification of the Dichromatic Polynomial -- 3.8 Imaginary Temperature, Real Time and Quantum Statistics -- References -- 4 The Penrose-Onsager-Yang Approach to Superconductivity and Superfluidity -- 4.1 Quantum Condensation: The Onsager-Penrose-Yang Approach -- 4.2 Some Considerations and Questions Raised by the Content of Sect.4.1 -- 4.3 What Is Special About Quantum Condensates? -- 4.4 Why Is Nature So Fond of ``Simple'' Quantum Condensation? Why Is ``Fragmentation'' So Rare? -- 4.5 When Does Fragmentation Occur? -- 4.6 Alternative Approaches to Quantum Condensation: Some Problems -- 4.6.1 ODLRO -- 4.6.2 Anomalous Averages -- 4.6.3 ``Spontaneously Broken U(1) Symmetry'' -- References. 5 Quantum Operads -- 5.1 Introduction and Brief Survey -- 5.2 Quantum Structures in Symmetric Monoidal Categories -- 5.2.1 Monoidal (=Tensor) Categories V (Sm16, Sec. 2.2, 2.3) -- 5.2.2 Symmetric Monoidal Categories -- 5.2.3 Magmas, Comagmas, Bimagmas, Associativity and Commutativity for (co, bi)magmas in Symmetric Monoidal Categories (Sm16, Sec. 2.4) -- 5.2.4 Monoids, Comonoids, Bimonoids, and Hopf Algebras in Symmetric MonoIdal Categories (Sm16, Def. 2.7) -- 5.2.5 Quantum Quasigroups (Sm16, Sec. 3.1) -- 5.2.6 Quantum Loops -- 5.2.7 Functoriality (Sm16, Prop. 3.4) -- 5.2.8 Magmas etc. in the Categories of Sets with Direct Product -- 5.3 Monoidal Categories of Operads -- 5.3.1 Graphs and Their Categories -- 5.3.2 Operads and Categories of Operads (See BoMa08, Sec. 1.6, p. 262) -- 5.3.3 Operads and Collections as Symmetric Monoidal Categories -- 5.3.4 Operads as Monoids -- 5.3.4.1 Freely Generated Operads -- 5.3.5 Comonoids in Operadic Setup -- 5.3.6 The Magmatic Operad (See ChCorGi19) -- 5.3.7 Quasigroup Monomials and Planar Trees -- 5.4 Moufang Loops and Operads -- 5.4.1 Moufang Monomials and Their Encoding by Labeled Graphs -- 5.4.2 Passage to Moufang Operad: Basic Identity -- 5.4.3 Moufang Collections (See BoMa08, Sec. 1.5, pp. 259-261) -- 5.4.4 Latin Square Designs and Their Encoding by Graphs -- 5.4.4.1 Simplest Examples -- 5.4.5 From Loops to Latin Square Designs -- 5.5 Operadic Structures on Quantum States -- 5.5.1 Operads of Classical and Quantum Probabilities -- 5.5.1.1 Averages as an Algebra Over the Operad P -- 5.5.1.2 A∞-Operad and Entropy -- 5.5.2 Classical Probabilities from Quantum States -- 5.5.3 Non-unital Operads -- 5.5.4 The QP-Operad of Quantum States -- 5.5.5 The Q-Operad of Quantum States -- 5.5.6 Trees of Projective Quantum Measurements -- 5.5.7 Entropy Functionals -- 5.5.8 A∞-Operad of Quantum Channels. 5.6 Operads and Almost-Symplectic Quantum Codes -- 5.6.1 Rational and Binary Little Square Operads -- 5.6.1.1 Binary Little Square Operad -- 5.6.1.2 Strict Binary Little Squares -- 5.6.2 Binary Little Square Operads and Almost Symplectic Spaces -- 5.6.3 Colored p-ary Little Squares -- 5.6.3.1 Operads and Almost-Symplectic Structures Over Fp -- 5.6.4 Operad Partial-Action on Quantum Codes -- References -- 6 Quantum Computational Complexity with Photons and Linear Optics -- 6.1 Introduction -- 6.2 The Mathematics: Permanent and Hafnian -- 6.2.1 Permanent -- 6.2.2 Hafnian -- 6.3 The Model: Boson Sampling -- 6.4 Single-Photon Boson Sampling Experiments -- 6.5 Quantum Computational Advantage with Jiuzhang -- 6.6 Applications -- References -- 7 Quantized Twistors, G2*, and the Split Octonions -- 7.1 A Key Motivation for the Formulation of Twistor Theory -- 7.2 The 2-Spinor Formalism -- 7.3 Projective Twistor Space -- 7.4 Twistor Kinematics -- 7.5 Quantized Twistor Theory and Masless Fields -- 7.6 Split Octonions and G2* -- References -- 8 Kronecker Anomalies and Gravitational Striction -- 8.1 Introduction and General Discussion -- 8.2 Kronecker Anomaly in Thermal Harmonic Oscillator -- Appendix -- Kronecker Anomaly in Electromagnetic Theory -- Mathematical Aspects of Kronecker Anomaly -- Two Dimensional Scalar Electrodynamics on a Torus -- Kronecker Anomaly in Spaces with Constant Curvature -- Absence of Kronecker Anomalies in Even Dimensional de Sitter Spaces -- De Sitter Lacuna -- References -- 9 Projecting Local and Global Symmetries to the Planck Scale -- 9.1 Introduction -- 9.2 Quantum Mechanics -- 9.3 Classical Models Underlying Quantum Mechanics -- 9.4 The Standard Model -- References -- 10 Gauge Symmetry in Shape Dynamics -- 10.1 Gauge Structure: Fundamental, Emergent, Productive -- 10.2 Dynamical Equation for Deformable Bodies. 10.2.1 Referenced Angular Momentum -- 10.2.2 Inertia Tensor and Angular Motion -- 10.2.3 Gauge Symmetry and Gauge Field -- 10.2.4 Dynamical Equation -- 10.2.5 Three Dimensional Notation -- 10.2.6 Specializations -- 10.2.7 Angular Momentum and Energy -- 10.3 Extensions -- 10.3.1 Blobs, Media, and Swarms -- 10.3.2 Molecules and Nuclei -- Appendix -- Direct Calculation -- References -- 11 Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit? -- 11.1 Introduction -- 11.2 Quantum Field Theory in Curved Spacetime -- 11.2.1 The Problem -- 11.2.2 Practicing with a Spin System -- 11.2.3 A System of Harmonic Oscillators -- 11.2.4 Back to Field Theory -- 11.2.5 What Is Quantum Field Theory in an Open Universe? -- 11.2.6 Non-Free Theories -- 11.3 Quantum Statistical Mechanics and the Thermodynamic Limit -- 11.3.1 The Thermofield Double -- 11.3.2 Surprises in the Thermodynamic Limit -- 11.3.3 Examples from Spin Systems -- 11.3.4 Relation to Quantum Field Theory -- 11.3.5 The Hagedorn Temperature -- 11.3.6 Density Matrices and Entropy -- 11.4 The Large N Limit and the Thermofield Double -- References -- 12 Quantum Anomalous Hall Effect -- 13 Magic Superconducting States in Cuprates -- References. |
Record Nr. | UNISA-996503551503316 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Dialogues between physics and mathematics : C. N. Yang At 100 / / edited by Mo-Lin Ge, Yang-Hui He |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (324 pages) |
Disciplina | 780 |
Soggetto topico |
Mathematics
Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-17523-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- 1 Frank Yang at Stony Brook and the Beginning of Supergravity -- 1.1 Prologue -- 1.2 Frank Before Coming to Stony Brook -- 1.3 Early Years of Frank at Stony Brook -- 1.4 Supersymmetry and Quantum Gravity Before 1976 -- 1.5 Some Recollections of the Path to Supergravity at Stony Brook -- 1.6 Supergravity Lives! -- 1.7 Epilogue -- 1.8 Later Years of Frank at Stony Brook -- References -- 2 A Stacky Approach to Crystals -- 2.1 Introduction -- 2.1.1 A Theorem of Bhatt-Morrow-Scholze -- 2.1.2 A Generalization -- 2.1.3 Isocrystals -- 2.1.3.1 What We Mean by an Isocrystal -- 2.1.3.2 The Result on Isocrystals -- 2.1.3.3 ``Banachian Games'' and `3́9`42`"̇613A``45`47`"603ABunQ -- 2.2 Crystals and Crystalline Cohomology -- 2.2.1 A Class of Schemes -- 2.2.2 Some Simplicial Formal Schemes -- 2.2.2.1 The Simplicial Scheme P -- 2.2.2.2 The Simplicial Formal Scheme F -- 2.2.2.3 The Simplicial Formal Scheme A -- 2.2.3 Notation and Terminology Related to Quasi-Coherent Sheaves -- 2.2.3.1 p-adic Formal Schemes and Stacks -- 2.2.3.2 The Notation QCoh (Y) -- 2.2.3.3 Zp-Flatness -- 2.2.3.4 Finite Generation -- 2.2.3.5 Cohomology -- 2.2.3.6 Equivariant Objects -- 2.2.3.7 Objects of QCoh (Y ) as Sheaves -- 2.2.3.8 Proof of (2.2) -- 2.2.4 Formulation of the Results -- 2.2.4.1 Convention -- 2.2.5 Proof of Theorem 2.1(i) -- 2.2.5.1 The Simplicial Formal Scheme X -- 2.2.5.2 End of the Proof -- 2.2.6 Proof of Theorem 2.1(ii) -- 2.2.6.1 General Remark -- 2.2.6.2 The Functor in One Direction -- 2.2.6.3 Factorizing the Functor (2.8) -- 2.2.7 Proof of Theorem 2.1(iii) -- 2.2.7.1 General Remark -- 2.2.7.2 The Map in One Direction -- 2.2.7.3 End of the Proof -- 2.2.8 H0`3́9`42`"̇613A``45`47`"603Acris(X,O) and the Ring of Constants -- 2.2.8.1 The Ring of Constants -- 2.3 Isocrystals -- 2.3.1 A Class of Schemes.
2.3.1.1 The Ring of Constants -- 2.3.2 Coherent Crystals and Isocrystals -- 2.3.3 Local Projectivity -- 2.3.4 Proof of Proposition 2.4 -- 2.3.4.1 Strategy -- 2.3.5 Isocrystals as Vector Bundles -- 2.3.5.1 The Category `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.2 Flat Descent for `3́9`42`"̇613A``45`47`"603ABunQ(Y ) -- 2.3.5.3 Equivariant Objects of `3́9`42`"̇613A``45`47`"603ABunQ(Y) -- 2.3.6 Banachian Games -- 2.3.6.1 One of the Goals -- 2.3.6.2 Proof of Theorem 2.2 -- 2.3.7 Proof of Propositions 2.5 and 2.6 -- Appendix -- The Isomorphism Between W(X`3́9`42`"̇613A``45`47`"603Aperf)/G and the Prismatization of X -- The Goal -- Prismatization of Semiperfect Fp-Schemes -- Perfect Case -- General Case -- The Morphism W(X`3́9`42`"̇613A``45`47`"603Aperf)`3́9`42`"̇613A``45`47`"603AWCartX -- The Čech Nerve of (2.30) -- References -- 3 The Potts Model, the Jones Polynomial and Link Homology -- 3.1 Introduction -- 3.2 Bracket Polynomial and Jones Polynomial -- 3.3 Khovanov Homology and the Cube Category -- 3.4 The Dichromatic Polynomial and the Potts Model -- 3.5 Khovanov Homology -- 3.6 Homology and the Potts Model -- 3.7 The Potts Model and Stosic's Categorification of the Dichromatic Polynomial -- 3.8 Imaginary Temperature, Real Time and Quantum Statistics -- References -- 4 The Penrose-Onsager-Yang Approach to Superconductivity and Superfluidity -- 4.1 Quantum Condensation: The Onsager-Penrose-Yang Approach -- 4.2 Some Considerations and Questions Raised by the Content of Sect.4.1 -- 4.3 What Is Special About Quantum Condensates? -- 4.4 Why Is Nature So Fond of ``Simple'' Quantum Condensation? Why Is ``Fragmentation'' So Rare? -- 4.5 When Does Fragmentation Occur? -- 4.6 Alternative Approaches to Quantum Condensation: Some Problems -- 4.6.1 ODLRO -- 4.6.2 Anomalous Averages -- 4.6.3 ``Spontaneously Broken U(1) Symmetry'' -- References. 5 Quantum Operads -- 5.1 Introduction and Brief Survey -- 5.2 Quantum Structures in Symmetric Monoidal Categories -- 5.2.1 Monoidal (=Tensor) Categories V (Sm16, Sec. 2.2, 2.3) -- 5.2.2 Symmetric Monoidal Categories -- 5.2.3 Magmas, Comagmas, Bimagmas, Associativity and Commutativity for (co, bi)magmas in Symmetric Monoidal Categories (Sm16, Sec. 2.4) -- 5.2.4 Monoids, Comonoids, Bimonoids, and Hopf Algebras in Symmetric MonoIdal Categories (Sm16, Def. 2.7) -- 5.2.5 Quantum Quasigroups (Sm16, Sec. 3.1) -- 5.2.6 Quantum Loops -- 5.2.7 Functoriality (Sm16, Prop. 3.4) -- 5.2.8 Magmas etc. in the Categories of Sets with Direct Product -- 5.3 Monoidal Categories of Operads -- 5.3.1 Graphs and Their Categories -- 5.3.2 Operads and Categories of Operads (See BoMa08, Sec. 1.6, p. 262) -- 5.3.3 Operads and Collections as Symmetric Monoidal Categories -- 5.3.4 Operads as Monoids -- 5.3.4.1 Freely Generated Operads -- 5.3.5 Comonoids in Operadic Setup -- 5.3.6 The Magmatic Operad (See ChCorGi19) -- 5.3.7 Quasigroup Monomials and Planar Trees -- 5.4 Moufang Loops and Operads -- 5.4.1 Moufang Monomials and Their Encoding by Labeled Graphs -- 5.4.2 Passage to Moufang Operad: Basic Identity -- 5.4.3 Moufang Collections (See BoMa08, Sec. 1.5, pp. 259-261) -- 5.4.4 Latin Square Designs and Their Encoding by Graphs -- 5.4.4.1 Simplest Examples -- 5.4.5 From Loops to Latin Square Designs -- 5.5 Operadic Structures on Quantum States -- 5.5.1 Operads of Classical and Quantum Probabilities -- 5.5.1.1 Averages as an Algebra Over the Operad P -- 5.5.1.2 A∞-Operad and Entropy -- 5.5.2 Classical Probabilities from Quantum States -- 5.5.3 Non-unital Operads -- 5.5.4 The QP-Operad of Quantum States -- 5.5.5 The Q-Operad of Quantum States -- 5.5.6 Trees of Projective Quantum Measurements -- 5.5.7 Entropy Functionals -- 5.5.8 A∞-Operad of Quantum Channels. 5.6 Operads and Almost-Symplectic Quantum Codes -- 5.6.1 Rational and Binary Little Square Operads -- 5.6.1.1 Binary Little Square Operad -- 5.6.1.2 Strict Binary Little Squares -- 5.6.2 Binary Little Square Operads and Almost Symplectic Spaces -- 5.6.3 Colored p-ary Little Squares -- 5.6.3.1 Operads and Almost-Symplectic Structures Over Fp -- 5.6.4 Operad Partial-Action on Quantum Codes -- References -- 6 Quantum Computational Complexity with Photons and Linear Optics -- 6.1 Introduction -- 6.2 The Mathematics: Permanent and Hafnian -- 6.2.1 Permanent -- 6.2.2 Hafnian -- 6.3 The Model: Boson Sampling -- 6.4 Single-Photon Boson Sampling Experiments -- 6.5 Quantum Computational Advantage with Jiuzhang -- 6.6 Applications -- References -- 7 Quantized Twistors, G2*, and the Split Octonions -- 7.1 A Key Motivation for the Formulation of Twistor Theory -- 7.2 The 2-Spinor Formalism -- 7.3 Projective Twistor Space -- 7.4 Twistor Kinematics -- 7.5 Quantized Twistor Theory and Masless Fields -- 7.6 Split Octonions and G2* -- References -- 8 Kronecker Anomalies and Gravitational Striction -- 8.1 Introduction and General Discussion -- 8.2 Kronecker Anomaly in Thermal Harmonic Oscillator -- Appendix -- Kronecker Anomaly in Electromagnetic Theory -- Mathematical Aspects of Kronecker Anomaly -- Two Dimensional Scalar Electrodynamics on a Torus -- Kronecker Anomaly in Spaces with Constant Curvature -- Absence of Kronecker Anomalies in Even Dimensional de Sitter Spaces -- De Sitter Lacuna -- References -- 9 Projecting Local and Global Symmetries to the Planck Scale -- 9.1 Introduction -- 9.2 Quantum Mechanics -- 9.3 Classical Models Underlying Quantum Mechanics -- 9.4 The Standard Model -- References -- 10 Gauge Symmetry in Shape Dynamics -- 10.1 Gauge Structure: Fundamental, Emergent, Productive -- 10.2 Dynamical Equation for Deformable Bodies. 10.2.1 Referenced Angular Momentum -- 10.2.2 Inertia Tensor and Angular Motion -- 10.2.3 Gauge Symmetry and Gauge Field -- 10.2.4 Dynamical Equation -- 10.2.5 Three Dimensional Notation -- 10.2.6 Specializations -- 10.2.7 Angular Momentum and Energy -- 10.3 Extensions -- 10.3.1 Blobs, Media, and Swarms -- 10.3.2 Molecules and Nuclei -- Appendix -- Direct Calculation -- References -- 11 Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit? -- 11.1 Introduction -- 11.2 Quantum Field Theory in Curved Spacetime -- 11.2.1 The Problem -- 11.2.2 Practicing with a Spin System -- 11.2.3 A System of Harmonic Oscillators -- 11.2.4 Back to Field Theory -- 11.2.5 What Is Quantum Field Theory in an Open Universe? -- 11.2.6 Non-Free Theories -- 11.3 Quantum Statistical Mechanics and the Thermodynamic Limit -- 11.3.1 The Thermofield Double -- 11.3.2 Surprises in the Thermodynamic Limit -- 11.3.3 Examples from Spin Systems -- 11.3.4 Relation to Quantum Field Theory -- 11.3.5 The Hagedorn Temperature -- 11.3.6 Density Matrices and Entropy -- 11.4 The Large N Limit and the Thermofield Double -- References -- 12 Quantum Anomalous Hall Effect -- 13 Magic Superconducting States in Cuprates -- References. |
Record Nr. | UNINA-9910634035903321 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski |
Autore | Sarti Alessandro |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (222 pages) |
Disciplina | 516.36 |
Collana | Lecture Notes in Morphogenesis |
Soggetto topico |
Geometry, Differential
Geometria diferencial Generació espontània Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-97797-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- 1 Introduction -- 1.1 The Problematic Dimension of Becoming -- 1.2 From Structuralism to Post-structural Dynamics -- 1.3 The Weakening of Differential Constraints -- 1.4 Heterogenetic Morphodynamics -- 1.5 The Empirical Basins of Heterogenesis -- 1.6 The Emergence of Semiosis -- 1.7 Semiolinguistics -- 1.8 Towards an Extended Imaginative Plane -- 1.9 Organization of the Volume -- References -- 2 Elements of Morphodynamics -- 2.1 Individuation -- 2.1.1 Differential Becoming -- 2.2 Singularities -- 2.2.1 Poincaré Singularities -- 2.3 Structural Morphodynamics -- 2.3.1 Degenerate Critical Points and Thom's Catastrophe Theory -- 2.3.2 Dynamizing Saussure, Greimas, and Lévi-Strauss -- References -- 3 Multiplicity and Assemblages -- 3.1 Multiplicity -- 3.2 Riemannian Geometry -- 3.2.1 Manifolds -- 3.2.2 Charts -- 3.2.3 Atlas and Smooth Manifolds -- 3.2.4 The Tangent Plane at a Point -- 3.2.5 Metrics and Striated Manifolds -- 3.3 The Plane of Composition -- 3.4 Assemblages -- 3.5 Rhizomes -- 3.6 Machines -- 3.7 Towards New Geometries and Dynamics -- References -- 4 Differential Heterogenesis -- 4.1 Discussing Homogenesis -- 4.1.1 Geometric and Dynamic Heterogeneity -- 4.1.2 Beyond Mathematical Physics -- 4.1.3 Khronos and Aion -- 4.1.4 Mathematical Constructivism and Historical Contingency -- 4.1.5 Living and Perceptual Mutations -- 4.1.6 Negative Results -- 4.1.7 Against Homogenesis -- 4.2 Sub-Riemannian Geometric Multiplicity -- 4.2.1 Beyond Riemannian Geometry -- 4.2.2 Tangent Space and Admissible Tangent Space -- 4.2.3 Sub-Riemannian Manifolds and Vector Fields -- 4.2.4 Non-Commuting Vector Fields and Uncertainty Principle -- 4.2.5 The Sub-Riemannian Metric -- 4.2.6 The Connectivity Problem -- 4.2.7 Lifting the Geometry of the Space -- 4.3 Heterogeneous Dynamic Multiplicity -- 4.3.1 Differential Operators.
4.3.2 Sub-Riemannian Flows. Homogeneous Operators in an Heterogeneous Geometry -- 4.3.3 Heterogeneous Operators -- 4.3.4 Operators as Shapes -- 4.3.5 Lifting of Operators -- 4.4 Geometric and Dynamic Assemblages -- 4.4.1 Dynamic and Geometrical Lifting of a Multiplicity of Operators -- 4.4.2 Extension of the Operator Via Partition of the Unit -- 4.4.3 Heterogeneous Assemblage -- 4.4.4 Curve in the Space of Operators and Metamorphosis of Operators -- 4.5 The Heterogenetic Flow and Its Vibrational Modes: Plateaus -- 4.6 Multiplicity of Multiplicities -- References -- 5 Differential Cognitive Neuroscience -- 5.1 Neuromagma -- 5.2 Structures, Assemblages, and Plateaus of the Neuromagma -- 5.2.1 Neurogeometry -- 5.2.2 Operator Kernels -- 5.2.3 Brain Activity and Plateaus -- 5.2.4 Plateaus I: The Formemes of Plastic Forms -- 5.2.5 Plateaus II: Perceptual Grouping -- 5.2.6 Plateaus III: Hallucinations -- 5.3 Strata: Modal and Amodal Completion -- 5.4 Composition-Actualization of Percepts -- 5.4.1 The Four Stages of the Constitution of Plastic Morphologies -- 5.5 Embodied, Embedded, Enactive, Extended Cognition -- 5.5.1 Embodied Plasticity: Saliences and Pregnancies -- 5.5.2 Extended Cognition -- 5.6 Imagination and Insight -- 5.7 Metamorphosis -- References -- 6 Expression and Semiogenesis -- 6.1 Problematic Landscape -- 6.2 The Problem of Expression -- 6.2.1 The Expressive Phenomenon -- 6.2.2 A Community of Views -- 6.2.3 Shared Difficulties -- 6.2.4 The Semiotic Function -- 6.2.5 Saussure -- 6.2.6 Hjelmslev -- 6.2.7 Husserl -- 6.2.8 Discussion -- 6.2.9 Peirce -- 6.2.10 Eco/Hjelmslev -- 6.2.11 Eco/Peirce -- 6.2.12 Fontanille -- 6.2.13 Conclusion -- 6.3 The Merleau-Pontian Solution: Toward Heterogenesis -- 6.3.1 The Problem of Solicitations -- 6.3.2 The Elaboration of Stimuli -- 6.3.3 Concrete/Abstract -- 6.3.4 Interior Relationships. 6.3.5 Transition and Conjectures -- 6.3.6 Solicitations -- 6.3.7 Heterogenesis: From Sollicitation to Cosubstantiality -- 6.4 A Convergent Argument -- 6.4.1 Overview -- 6.4.2 From Expression to Speech: The Problem -- 6.4.3 From Speech as Gesture to the First Speech -- 6.4.4 The Differential Foundation of the First Speech -- 6.4.5 From Expression to Speech: Outline of a Heterogenetic Solution -- 6.5 A Necessary Overreach -- 6.5.1 Recalls -- 6.5.2 Problematical Opening -- 6.6 Inner Relations: Problems and Possible Solution -- 6.6.1 Problems -- 6.6.2 Possible Solution -- 6.7 On the Constitution of the Sign -- 6.7.1 Morphodynamics of the Saussurean Sign -- 6.7.2 The Autotransgression of the Semiotic -- 6.7.3 Conclusion -- References -- 7 Chiusa: Morphodynamic Poetry -- 7.1 Individuation Between Potency and Form -- 7.2 Disentaglement: Composition Versus Maximization -- 7.3 Mutant Sensibilities -- 7.4 The Letter of the Seer -- References -- 8 Plates -- Subject Index -- Author Index. |
Record Nr. | UNISA-996483154703316 |
Sarti Alessandro
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Differential heterogenesis : mutant forms, sensitive bodies / / Alessandro Sarti, Giovanna Citti, David Piotrowski |
Autore | Sarti Alessandro |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (222 pages) |
Disciplina | 516.36 |
Collana | Lecture Notes in Morphogenesis |
Soggetto topico |
Geometry, Differential
Geometria diferencial Generació espontània Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-97797-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- 1 Introduction -- 1.1 The Problematic Dimension of Becoming -- 1.2 From Structuralism to Post-structural Dynamics -- 1.3 The Weakening of Differential Constraints -- 1.4 Heterogenetic Morphodynamics -- 1.5 The Empirical Basins of Heterogenesis -- 1.6 The Emergence of Semiosis -- 1.7 Semiolinguistics -- 1.8 Towards an Extended Imaginative Plane -- 1.9 Organization of the Volume -- References -- 2 Elements of Morphodynamics -- 2.1 Individuation -- 2.1.1 Differential Becoming -- 2.2 Singularities -- 2.2.1 Poincaré Singularities -- 2.3 Structural Morphodynamics -- 2.3.1 Degenerate Critical Points and Thom's Catastrophe Theory -- 2.3.2 Dynamizing Saussure, Greimas, and Lévi-Strauss -- References -- 3 Multiplicity and Assemblages -- 3.1 Multiplicity -- 3.2 Riemannian Geometry -- 3.2.1 Manifolds -- 3.2.2 Charts -- 3.2.3 Atlas and Smooth Manifolds -- 3.2.4 The Tangent Plane at a Point -- 3.2.5 Metrics and Striated Manifolds -- 3.3 The Plane of Composition -- 3.4 Assemblages -- 3.5 Rhizomes -- 3.6 Machines -- 3.7 Towards New Geometries and Dynamics -- References -- 4 Differential Heterogenesis -- 4.1 Discussing Homogenesis -- 4.1.1 Geometric and Dynamic Heterogeneity -- 4.1.2 Beyond Mathematical Physics -- 4.1.3 Khronos and Aion -- 4.1.4 Mathematical Constructivism and Historical Contingency -- 4.1.5 Living and Perceptual Mutations -- 4.1.6 Negative Results -- 4.1.7 Against Homogenesis -- 4.2 Sub-Riemannian Geometric Multiplicity -- 4.2.1 Beyond Riemannian Geometry -- 4.2.2 Tangent Space and Admissible Tangent Space -- 4.2.3 Sub-Riemannian Manifolds and Vector Fields -- 4.2.4 Non-Commuting Vector Fields and Uncertainty Principle -- 4.2.5 The Sub-Riemannian Metric -- 4.2.6 The Connectivity Problem -- 4.2.7 Lifting the Geometry of the Space -- 4.3 Heterogeneous Dynamic Multiplicity -- 4.3.1 Differential Operators.
4.3.2 Sub-Riemannian Flows. Homogeneous Operators in an Heterogeneous Geometry -- 4.3.3 Heterogeneous Operators -- 4.3.4 Operators as Shapes -- 4.3.5 Lifting of Operators -- 4.4 Geometric and Dynamic Assemblages -- 4.4.1 Dynamic and Geometrical Lifting of a Multiplicity of Operators -- 4.4.2 Extension of the Operator Via Partition of the Unit -- 4.4.3 Heterogeneous Assemblage -- 4.4.4 Curve in the Space of Operators and Metamorphosis of Operators -- 4.5 The Heterogenetic Flow and Its Vibrational Modes: Plateaus -- 4.6 Multiplicity of Multiplicities -- References -- 5 Differential Cognitive Neuroscience -- 5.1 Neuromagma -- 5.2 Structures, Assemblages, and Plateaus of the Neuromagma -- 5.2.1 Neurogeometry -- 5.2.2 Operator Kernels -- 5.2.3 Brain Activity and Plateaus -- 5.2.4 Plateaus I: The Formemes of Plastic Forms -- 5.2.5 Plateaus II: Perceptual Grouping -- 5.2.6 Plateaus III: Hallucinations -- 5.3 Strata: Modal and Amodal Completion -- 5.4 Composition-Actualization of Percepts -- 5.4.1 The Four Stages of the Constitution of Plastic Morphologies -- 5.5 Embodied, Embedded, Enactive, Extended Cognition -- 5.5.1 Embodied Plasticity: Saliences and Pregnancies -- 5.5.2 Extended Cognition -- 5.6 Imagination and Insight -- 5.7 Metamorphosis -- References -- 6 Expression and Semiogenesis -- 6.1 Problematic Landscape -- 6.2 The Problem of Expression -- 6.2.1 The Expressive Phenomenon -- 6.2.2 A Community of Views -- 6.2.3 Shared Difficulties -- 6.2.4 The Semiotic Function -- 6.2.5 Saussure -- 6.2.6 Hjelmslev -- 6.2.7 Husserl -- 6.2.8 Discussion -- 6.2.9 Peirce -- 6.2.10 Eco/Hjelmslev -- 6.2.11 Eco/Peirce -- 6.2.12 Fontanille -- 6.2.13 Conclusion -- 6.3 The Merleau-Pontian Solution: Toward Heterogenesis -- 6.3.1 The Problem of Solicitations -- 6.3.2 The Elaboration of Stimuli -- 6.3.3 Concrete/Abstract -- 6.3.4 Interior Relationships. 6.3.5 Transition and Conjectures -- 6.3.6 Solicitations -- 6.3.7 Heterogenesis: From Sollicitation to Cosubstantiality -- 6.4 A Convergent Argument -- 6.4.1 Overview -- 6.4.2 From Expression to Speech: The Problem -- 6.4.3 From Speech as Gesture to the First Speech -- 6.4.4 The Differential Foundation of the First Speech -- 6.4.5 From Expression to Speech: Outline of a Heterogenetic Solution -- 6.5 A Necessary Overreach -- 6.5.1 Recalls -- 6.5.2 Problematical Opening -- 6.6 Inner Relations: Problems and Possible Solution -- 6.6.1 Problems -- 6.6.2 Possible Solution -- 6.7 On the Constitution of the Sign -- 6.7.1 Morphodynamics of the Saussurean Sign -- 6.7.2 The Autotransgression of the Semiotic -- 6.7.3 Conclusion -- References -- 7 Chiusa: Morphodynamic Poetry -- 7.1 Individuation Between Potency and Form -- 7.2 Disentaglement: Composition Versus Maximization -- 7.3 Mutant Sensibilities -- 7.4 The Letter of the Seer -- References -- 8 Plates -- Subject Index -- Author Index. |
Record Nr. | UNINA-9910584478703321 |
Sarti Alessandro
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Equations of Mathematical Physics : Generalized Functions and Historical Notes / / by A. S. Demidov |
Autore | Demidov A. S |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (260 pages) |
Disciplina | 530.15 |
Soggetto topico |
Functional analysis
Mathematical physics Functional Analysis Mathematical Physics Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-30358-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction. - Introduction to problems of mathmatical physics -- The spaces D♭, D♯ and D′. Elements of the distribution theory. - Pseudodifferential operators and Fourier operators. - New approach to the theory of generalized functions (Yu.V. Egorov). - Algebras of mnemonic functions (A. B. Antonevich) -- Extensions first-order partial differential operators (S.N. Samborskii). - References-. Index. |
Record Nr. | UNINA-9910734837103321 |
Demidov A. S
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Excel 2019 for physical sciences statistics : a guide to solving practical problems / / Thomas J. Quirk, Meghan H. Quirk, Howard F. Horton |
Autore | Quirk Thomas J. |
Edizione | [2nd ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XIX, 242 p. 166 illus., 161 illus. in color.) |
Disciplina | 519.5 |
Collana | Excel for Statistics |
Soggetto topico |
Statistics
Mathematical physics Application software Estadística Física matemàtica Programari d'aplicació |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-63238-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Acknowledgements -- 1 Sample Size, Mean, Standard Deviation, and Standard Error of the Mean -- 2 Random Number Generator -- 3 Confidence Interval About the Mean Using the TINV Function and Hypothesis Testing -- 4 One-Group t-Test for the Mean -- 5 Two-Group t-Test of the Difference of the Means for Independent Groups -- 6 Correlation and Simple Linear Regression -- 7 Multiple Correlation and Multiple Regression -- 8 One-Way Analysis of Variance (ANOVA) -- Appendix A: Answers to End-of-Chapter Practice Problems -- Appendix B: Practice Test -- Appendix C: Answers to Practice Test -- Appendix D: Statistical Formulas -- Appendix E: t-table -- Index. |
Record Nr. | UNISA-996466556103316 |
Quirk Thomas J.
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|