top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Active Particles, Volume 4 : Theory, Models, Applications / / edited by José Antonio Carrillo, Eitan Tadmor
Active Particles, Volume 4 : Theory, Models, Applications / / edited by José Antonio Carrillo, Eitan Tadmor
Autore Carrillo José Antonio
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (510 pages)
Disciplina 003.3
Altri autori (Persone) TadmorEitan
Collana Modeling and Simulation in Science, Engineering and Technology
Soggetto topico Mathematical models
System theory
Statistical physics
Statistical mechanics
Mathematical Modeling and Industrial Mathematics
Complex Systems
Statistical Physics
Statistical Mechanics
Matemàtica aplicada
Teoria de sistemes
Física estadística
Mecànica estadística
Soggetto genere / forma Llibres electrònics
ISBN 9783031734236
3031734238
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Consistency of Semi-supervised Learning, Stochastic Tug-of-War Games, and the p-Laplacian -- 2 Discrete Minimizers of the Interaction Energy in Collective Behavior -- 3 Large-Population Limits of Non-Exchangeable Particle Systems -- 4 Models of Animal Behavior as Active Particle Systems with Nonreciprocal Interactions -- 5 Bayesian Sampling Using Interacting Particles -- 6 Aggregation-Diffusion Phenomena -- 7 Conservative Semi-Lagrangian Methods for Kinetic Equations -- 8 Large Population Limit of Interacting Population Dynamics via Generalized Gradient Structures -- 9 Adjoint Monte Carlo Method.
Record Nr. UNINA-9910917794103321
Carrillo José Antonio  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric structures of statistical physics, information geometry, and learning : SPIGL'20, Les Houches, France, July 27-31 / / Frédéric Barbaresco and Frank Nielsen (editors)
Geometric structures of statistical physics, information geometry, and learning : SPIGL'20, Les Houches, France, July 27-31 / / Frédéric Barbaresco and Frank Nielsen (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (466 pages)
Disciplina 530.13
Collana Springer Proceedings in Mathematics and Statistics
Soggetto topico Física estadística
Intel·ligència artificial
Statistical physics
Artificial intelligence
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-77957-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I: Tribute to Jean-Marie Souriau Seminal Works -- Structure des Systèmes Dynamiques Jean-Marie Souriau's Book 50th Birthday -- 1 A Few Introductory Words -- 2 Introduction -- 3 Chapter I: Differential Geometry -- 4 Chapter II: Symplectic Geometry -- 5 Chapter III: Mechanics -- 6 Chapter IV: Statistical Mechanics -- 7 Chapter V: A Method of Quantization -- 8 Conclusions -- References -- Jean-Marie Souriau's Symplectic Model of Statistical Physics: Seminal Papers on Lie Groups Thermodynamics - Quod Erat Demonstrandum -- 1 Preamble -- 2 Jean-Marie Souriau Biography -- 3 1st Souriau Paper: "Statistical Mechanics, Lie Group and Cosmology - 1st Part: Symplectic Model of Statistical Mechanics" -- 3.1 Distribution Functions -- 3.2 Statistical States -- 3.3 Image of Measures -- 3.4 Tensorial Products of Measure -- 3.5 Entropy -- 3.6 Canonical Gibbs Ensemble -- 3.7 Gibbs Ensemble of a Dynamic Group -- 3.8 Broken Symmetries -- 3.9 Thermodynamic Applications -- 3.10 Relativistic Thermodynamics -- 3.11 What is a Thermodynamic Equilibrium? -- 3.12 Proof of the Theorem (12) -- 4 2nd Souriau Paper: "Symplectic Geometry and Mathematical Physics" -- 4.1 1 - Since 1788. The Mechanics are Symplectic -- 4.2 2 - Emmy Noether and Measurable Quantities -- 4.3 3 - Mass and Cosmology -- 4.4 7 - Thermodynamics and Lie Groups -- 4.5 8 - Why the Earth Turns -- 5 3rd Souriau Paper: "Classical Mechanics and Symplectic Geometry" -- 5.1 Statistical Mechanics (Chapter 3.2) -- 5.2 Galilean Relativity (Chapter 2.7 in Souriau Paper) -- References -- Part II: Lie Group Geometry and Diffeological Model of Statistical Physics and Information Geometry -- Souriau-Casimir Lie Groups Thermodynamics and Machine Learning -- 1 Preamble -- 2 Souriau Lie Groups Thermodynamics and Covariant Gibbs Density -- 2.1 Geometric Structure of Information.
2.2 Lie Groups Thermodynamics and Souriau-Koszul-Fisher Metric -- 2.3 Souriau Entropy and Souriau-Fisher-Koszul Metric Invariance and Covariant Souriau Gibbs Density -- 3 New Entropy Characterization as Generalized Casimir Invariant Function in Coadjoint Representation -- 3.1 Souriau Entropy as Generalized Casimir Invariant in Coadjoint Representation -- 3.2 Souriau Entropy Invariance in Coadjoint Representation -- 3.3 Algebraic Method for Construction of Casimir Invariant Functions in Coadjoint Representation -- 4 Souriau Gibbs Density for Classical Lie Groups -- 4.1 Gibbs Density for SU(1,1) Lie Groups and Poincaré Disk in Case of Null Cohomology -- 4.2 Gibbs Density for SE(2) Lie Groups in Case of Non-null Cohomology -- 5 Conclusion -- References -- An Exponential Family on the Upper Half Plane and Its Conjugate Prior -- 1 Introduction -- 1.1 G/H-Method -- 1.2 Poincaré Distribution -- 1.3 Conjugate Prior of Exponential Family -- 2 Main Theorem -- 2.1 Main Theorem -- 2.2 Proof of Proposition 4 -- References -- Wrapped Statistical Models on Manifolds: Motivations, The Case SE(n), and Generalization to Symmetric Spaces -- 1 Introduction -- 2 Some Classical Probability Densities on Manifolds -- 3 Some Important Characteristics of Statistical Models on Manifolds -- 3.1 Expression of the Density Functions -- 3.2 Moments -- 3.3 Invariances and Estimation -- 4 Probability Densities on SE(n) -- 4.1 Wrapped Models on SE(n) -- 4.2 Density Estimation on SE(n) -- 5 Towards a Generalization to Symmetric Spaces -- 6 Conclusion -- References -- Galilean Thermodynamics of Continua -- 1 Some Words of Introduction -- 2 Space-Time and Galileo's Group -- 3 Geometric Structure of Thermodynamics -- 4 Temperature Vector and Friction Tensor -- 5 Momentum Tensors and First Principle -- 6 Reversible Processes and Thermodynamical Potentials.
7 Dissipative Continuum and Second Principle -- References -- Nonparametric Estimations and the Diffeological Fisher Metric -- 1 Introduction -- 2 Diffeological Fisher Metric, Diffeological Fisher Distance and Probabilistic Morphisms -- 3 Diffeological Cramér-Rao Inequality -- 4 Diffeological Hausdorff-Jeffrey Measure -- 5 Conclusion and Outlook -- References -- Part III: Advanced Geometrical Models of Statistical Manifolds in Information Geometry -- Information Geometry and Integrable Hamiltonian Systems -- 1 Introduction -- 1.1 The Toda Lattice and the Flaschka Transform -- 1.2 The Peakons System -- 1.3 Information Geometry, Toda System and Peakon System -- 2 Jacobi Flows and String Equation -- 2.1 Stieltjes Theorem -- 2.2 Hamburger Theorems and Stieltjes Integral -- 2.3 Discrete String -- 3 Finite Information Geometry -- 4 Conclusions and Perspectives -- References -- Relevant Differential Topology in Statistical Manifolds -- 1 Prologue -- 2 Intoduction -- 3 Basic Definitions -- 3.1 The Canonical Koszul Class of a Symmetric Gauge Structure -- 3.2 The Canonical Koszul Class of a Gauge Structure -- 3.3 Gauge Extensions of Gauge Dynamics -- 3.4 Transverse Statistical Structures -- 4 Reductions of Homogeneous Statistical Models -- 4.1 Canonical Projective Systems of Affinely Foliated H-Homogeneous Manifolds -- 4.2 Projective Sequence of Homogeneous Affinely Foliated Manifolds -- 4.3 Relative Invariant Subordinate Foliations -- 4.4 Subordinate Foliations and Topology of < -- H, M> -- -- 4.5 Metric Rigidity of FE() -- 5 The Case of Fisher Information -- 5.1 -equivalence -- 6 Relevant Foliations in Statistical Manifolds -- 6.1 Statistical Manifolds -- 6.2 Gauge Differential Operators -- 6.3 Relevant Constructions in Gauge Structures -- 6.4 Relevant Foliations in Positive Statistical Manifols -- 6.5 Symplectic Statistical Foliations.
6.6 Almost Hermitian Foliations in Statistical Manifolds -- 6.7 Riemannian Statistical Foliations -- 6.8 -Family of 4-Webs in Statistical Models of Measurable Sets -- References -- A Lecture About the Use of Orlicz Spaces in Information Geometry -- 1 Introduction -- 2 Orlicz Spaces -- 3 Calculus of the Gaussian Space -- 4 Exponential Statistical Bundle -- 5 Gaussian Orlicz-Sobolev Spaces -- 6 Selected Bibliography -- References -- Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences -- 1 Introduction, Motivation, and Contributions -- 2 Divergences Based on Inequality Gaps of Quasiconvex or Quasiconcave Generators -- 2.1 Quasiconvex and Quasiconcave Difference Dissimilarities -- 2.2 Relationship of Quasiconvex Difference Distances with Jensen Difference Distances -- 2.3 Quasiconvex Difference Distances from the Viewpoint of Comparative Convexity -- 3 Bregman Divergences for Quasiconvex Generators -- 3.1 Quasiconvex Bregman Divergences as Limit Cases of Quasiconvex Jensen Divergences -- 3.2 The -averaged Quasiconvex Bregman Divergence -- 3.3 Multivariate Quasiconvex Generators Q -- 3.4 Quasiconvex Bregman Divergences as Limit Cases of Power Mean Bregman Divergences -- 3.5 Some Illustrating Examples of Quasiconvex Bregman Divergences -- 4 Statistical Divergences, Parametric Families of Distributions and Equivalent Parameter Divergences -- 5 Conclusion and Perspectives -- 6 Calculations Using a Computer Algebra System -- References -- Part IV: Geometric Structures of Mechanics, Thermodynamics and Inference for Learning -- Dirac Structures and Variational Formulation of Thermodynamics for Open Systems -- 1 Fundamentals of Open Systems -- 1.1 Stueckelberg's Formulation of Nonequilibrium Thermodynamics -- 1.2 An Illustrative Example of Open Systems -- 2 A Variational Formulation for Open Systems.
2.1 Fundamental Setting for Open Nonequilibrium Thermodynamics -- 2.2 A Lagrangian Variational Formulation for Open Systems -- 3 Dirac Formulation for Time-Dependent Nonholonomic Systems of Thermodynamic Type -- 3.1 Time-Dependent Constraints of Thermodynamic Type -- 3.2 Dirac Structures on Covariant Pontryagin Bundles -- 3.3 Dirac Dynamical Systems on the Covariant Pontryagin Bundle -- 3.4 The Lagrange-d'Alembert-Pontryagin Principle on the Covariant Pontryagin Bundle -- 4 Dirac Formulation for Open Thermodynamic Systems -- 4.1 Application to the Piston-Cylinder System with External Ports -- 4.2 Dirac Dynamical Systems on the Covariant Pontryagin Bundle -- References -- The Geometry of Some Thermodynamic Systems -- 1 Introduction -- 2 Contact Geometry -- 2.1 The Jacobi Structure of a Contact Manifold -- 2.2 Hamiltonian and Evolution Vector Fields -- 3 The Lagrangian Formalism -- 3.1 The Geometric Setting -- 3.2 Generalized Chetaev Principle -- 4 The Evolution Vector Field and Simple Mechanical Systems with Friction -- 4.1 About the First and Second Laws of Thermodynamics -- 4.2 Examples -- 5 Composed Thermodynamic Systems Without Friction -- 6 Geometric Integration of Thermodynamic Systems -- 6.1 Simple Thermodynamic Systems with Friction -- 6.2 Composed Thermodynamic Systems -- 6.3 ``Variational Integration'' of the Evolution Vector Field -- 7 Conclusions and Future Work -- References -- Learning Physics from Data: A Thermodynamic Interpretation -- 1 Introduction -- 2 Pattern Recognition in Statistical Physics and Thermodynamics -- 2.1 Reduction and Pattern Recognition -- 2.2 Reducing Dynamics, Thermodynamics -- 2.3 Reduced Dynamics -- 3 Pattern Recognition in Machine Learning -- 3.1 General Scheme -- 3.2 Reduced Manifold Recognition by POD -- 3.3 Reduced Vector Field -- 4 Illustration on Learning from Particle Dynamics.
4.1 Smoothed Particle Hydrodynamics.
Record Nr. UNISA-996466400503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Journal of statistical physics
Journal of statistical physics
Pubbl/distr/stampa [New York, N.Y.], : Kluwer Academic Publishers
Disciplina 530.132
Soggetto topico Statistical physics
Physique statistique
33.26 statistical physics
Física estadística
Soggetto genere / forma Periodical
periodicals.
Periodicals.
Périodiques.
Revistes electròniques.
ISSN 1572-9613
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910134176903321
[New York, N.Y.], : Kluwer Academic Publishers
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling of complex signals in nerves / / Jüri Engelbrecht, Kert Tamm and Tanel Peets
Modelling of complex signals in nerves / / Jüri Engelbrecht, Kert Tamm and Tanel Peets
Autore Engelbrecht Jüri
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIII, 186 p. 66 illus.)
Disciplina 571.4
Soggetto topico Biomathematics
Statistical physics
Mathematics
Biomatemàtica
Física estadística
Soggetto genere / forma Llibres electrònics
ISBN 3-030-75039-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part I Complexity and Waves -- Part II Dynamical Processes in Nerve Axons -- Part III Modelling of Dynamical Physiological Processes -- Appendix: The Numerical Scheme -- Index. .
Record Nr. UNISA-996466410903316
Engelbrecht Jüri  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multidisciplinary mathematical modelling : applications of mathematics to the real world / / Francesc Font and Tim G. Myers, editors
Multidisciplinary mathematical modelling : applications of mathematics to the real world / / Francesc Font and Tim G. Myers, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (97 pages)
Disciplina 511.8
Collana SEMA SIMAI Springer
Soggetto topico Statistical physics
Biomathematics
Mathematical models
Física estadística
Biomatemàtica
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-64272-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466547103316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui