top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
75 Years of the Indian National Sample Survey : Evolution of Sample Design, Key Challenges and Way Forward / / by G C Manna
75 Years of the Indian National Sample Survey : Evolution of Sample Design, Key Challenges and Way Forward / / by G C Manna
Autore Manna G. C
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (313 pages)
Disciplina 331
Collana India Studies in Business and Economics
Soggetto topico Labor economics
Population - Economic aspects
Economics - Computer programs
Development economics
Sampling (Statistics)
Experimental design
Social sciences - Statistical methods
Labor and Population Economics
Computational Economics
Development Economics
Survey Methodology
Design of Experiments
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 981-9673-20-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction and history of formation of the NSS -- Chapter 2. Salient features of the NSS -- Chapter 3. Sample designs adopted in the NSS over its 75 years of operation -- Chapter 4. Major changes in sample design over the 75 years of functioning of the NSS -- Chapter 5. Three pilot surveys conducted by NSS -- Chapter 6. Discussion on global survey practices. Chapter 7. Derivation of NSS design-based estimates of aggregates and ratios -- Chapter 8. Level of precision of key estimates as per the NSS -- Chapter 9. Strengthening the NSS database.
Record Nr. UNINA-9911010527803321
Manna G. C  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive designs : selected proceedings of a 1992 joint AMS-IMS-SIAM summer conference / / Nancy Flournoy and William F. Rosenberger, editors [[electronic resource]]
Adaptive designs : selected proceedings of a 1992 joint AMS-IMS-SIAM summer conference / / Nancy Flournoy and William F. Rosenberger, editors [[electronic resource]]
Autore Flournoy Nancy
Pubbl/distr/stampa Hayward, Calif., : Institute of Mathematical Statistics, c1995
Descrizione fisica 1 online resource (viii, 288 p. ) : ill. ;
Disciplina 519.5/38
Altri autori (Persone) FlournoyNancy <1947->
RosenbergerWilliam F
Collana Institute of Mathematical Statistics lecture notes-monograph series
Soggetto topico Experimental design
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910482887403321
Flournoy Nancy  
Hayward, Calif., : Institute of Mathematical Statistics, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive designs : selected proceedings of a 1992 joint AMS-IMS-SIAM summer conference / / Nancy Flournoy and William F. Rosenberger, editors [[electronic resource]]
Adaptive designs : selected proceedings of a 1992 joint AMS-IMS-SIAM summer conference / / Nancy Flournoy and William F. Rosenberger, editors [[electronic resource]]
Autore Flournoy Nancy
Pubbl/distr/stampa Hayward, Calif., : Institute of Mathematical Statistics, c1995
Descrizione fisica 1 online resource (viii, 288 p. ) : ill. ;
Disciplina 519.5/38
Altri autori (Persone) FlournoyNancy <1947->
RosenbergerWilliam F
Collana Institute of Mathematical Statistics lecture notes-monograph series
Soggetto topico Experimental design
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996210821303316
Flournoy Nancy  
Hayward, Calif., : Institute of Mathematical Statistics, c1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Analysis of Data from Randomized Controlled Trials : A Practical Guide / / by Jos W.R. Twisk
Analysis of Data from Randomized Controlled Trials : A Practical Guide / / by Jos W.R. Twisk
Autore Twisk Jos W. R. <1962->
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (167 pages)
Disciplina 616.027
Soggetto topico Statistics
Clinical medicine - Research
Biometry
Experimental design
Statistical Theory and Methods
Clinical Research
Biostatistics
Design of Experiments
ISBN 9783030818654
3030818659
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Analysis of RCT data with one follow-up measurement -- Analysis of RCT data with more than one follow-up measurement -- Analysis of data from a cluster RCT -- Analysis of data from a cross-over trial -- Analysis of data from stepped wedge trials -- Analysis of data from N-of-1 trials -- Dichotomous outcomes -- What to do when only a baseline measurement is available -- Sample size calculations.
Record Nr. UNINA-9910502594203321
Twisk Jos W. R. <1962->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of messy data . Volume II Nonreplicated experiments / / George A. Milliken, Dallas E. Johnson
Analysis of messy data . Volume II Nonreplicated experiments / / George A. Milliken, Dallas E. Johnson
Autore Milliken George A. <1943->
Pubbl/distr/stampa Boca Raton : , : Chapman & Hall/CRC, , 2017
Descrizione fisica 1 online resource (205 pages)
Disciplina 519.538
Soggetto topico Analysis of variance
Experimental design
ISBN 1-315-17219-4
1-351-69712-9
1-351-69713-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910157800303321
Milliken George A. <1943->  
Boca Raton : , : Chapman & Hall/CRC, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Autore Weiss David J.
Pubbl/distr/stampa Oxford, England : , : Oxford University Press, , 2006
Descrizione fisica 1 online resource (278 p.)
Disciplina 519.5/38
Soggetto topico Analysis of variance
Experimental design
Soggetto genere / forma Electronic books.
ISBN 1-280-42863-5
0-19-534605-X
1-4237-6206-1
1-60256-570-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto One-way ANOVA -- Using the computer -- Factorial structure -- Two-way ANOVA -- Multi-factor designs -- Error purifying designs -- Specific comparisons -- Measurement issues -- Strength of effect -- Nested designs -- Missing data -- Confounded designs -- Introduction to functional measurement.
Record Nr. UNINA-9910457522203321
Weiss David J.  
Oxford, England : , : Oxford University Press, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Autore Weiss David J.
Pubbl/distr/stampa Oxford, England : , : Oxford University Press, , 2006
Descrizione fisica 1 online resource (278 p.)
Disciplina 519.5/38
Soggetto topico Analysis of variance
Experimental design
ISBN 0-19-773462-6
1-280-42863-5
0-19-534605-X
1-4237-6206-1
1-60256-570-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto One-way ANOVA -- Using the computer -- Factorial structure -- Two-way ANOVA -- Multi-factor designs -- Error purifying designs -- Specific comparisons -- Measurement issues -- Strength of effect -- Nested designs -- Missing data -- Confounded designs -- Introduction to functional measurement.
Record Nr. UNINA-9910784575703321
Weiss David J.  
Oxford, England : , : Oxford University Press, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Analysis of variance and functional measurement : a practical guide / / David J. Weiss
Autore Weiss David J.
Pubbl/distr/stampa Oxford, England : , : Oxford University Press, , 2006
Descrizione fisica 1 online resource (278 p.)
Disciplina 519.5/38
Soggetto topico Analysis of variance
Experimental design
ISBN 0-19-773462-6
1-280-42863-5
0-19-534605-X
1-4237-6206-1
1-60256-570-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto One-way ANOVA -- Using the computer -- Factorial structure -- Two-way ANOVA -- Multi-factor designs -- Error purifying designs -- Specific comparisons -- Measurement issues -- Strength of effect -- Nested designs -- Missing data -- Confounded designs -- Introduction to functional measurement.
Record Nr. UNINA-9910817267303321
Weiss David J.  
Oxford, England : , : Oxford University Press, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of Variance for High-Dimensional Data : Applications in Life, Food, and Chemical Sciences
Analysis of Variance for High-Dimensional Data : Applications in Life, Food, and Chemical Sciences
Autore Smilde Age K
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (339 pages)
Disciplina 570.285
Altri autori (Persone) MariniFederico
WesterhuisJohan A
LilandKristian Hovde
Soggetto topico Life sciences - Data processing
Food science - Data processing
Chemistry - Data processing
Experimental design
ISBN 1-394-21124-4
1-394-21122-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- Chapter 1 Introduction -- 1.1 Types of Data -- 1.2 Statistical Design of Experiments -- 1.3 High‐Dimensional Data -- 1.4 Examples -- 1.4.1 Metabolomics -- 1.4.2 Genomics -- 1.4.3 Microbiome -- 1.4.4 Proteomics -- 1.4.5 Food Science -- 1.4.6 Sensory Science -- 1.4.7 Chemistry -- 1.5 Complexities -- 1.5.1 Normalization -- 1.5.2 Different Measurement Scales -- 1.5.3 Different Distributions -- 1.5.4 Heteroscedastic Error -- 1.5.5 Comparability -- 1.5.6 Sparseness, Non‐detects, and Missing Values -- 1.5.7 Unbalancedness -- 1.6 Direct Versus Indirect Methods -- 1.7 Some History -- 1.A.1 Types of Measurements -- 1.A.2 Notation and Terminology -- 1.A.3 Some Definitions -- 1.A.4 Abbreviations -- Chapter 2 Basic Theory and Concepts -- 2.1 Mathematical Background -- 2.1.1 Vector Spaces and Subspaces -- 2.1.2 Matrix Decompositions -- 2.1.3 Inverses and Generalized Inverses -- 2.1.4 Distances and Projections -- 2.1.4.1 Formal Description of Distances -- 2.1.4.2 Projections -- 2.1.5 Principal Component Analysis -- 2.2 Statistical Background -- 2.2.1 Estimation Methods -- 2.2.1.1 Least Squares -- 2.2.1.2 Maximum Likelihood -- 2.2.2 Regression Methods -- 2.2.2.1 Multiple Linear Regression: Full Rank Case -- 2.2.2.2 Multiple Linear Regression Using Dummy Variables -- 2.2.2.3 Multiple Linear Regression: Rank Deficient Case -- 2.2.2.4 Penalized Regression -- 2.2.2.5 Principal Component Regression -- 2.2.2.6 Partial Least Squares -- 2.2.2.7 Redundancy Analysis -- 2.2.3 Significance Tests -- 2.2.3.1 Classical Tests -- 2.2.3.2 Permutation Tests -- 2.2.3.3 Likelihood Ratio Tests -- 2.3 Association Measures -- 2.3.1 Pearson and Spearman Correlation Coefficients -- 2.3.2 Problems with Correlations -- Chapter 3 Linear Models -- 3.1 Introduction -- 3.2 Simple ANOVA Models.
3.2.1 One‐Way ANOVA -- 3.2.2 Two‐Way ANOVA -- 3.2.2.1 Crossed Designs -- 3.2.2.2 Nested Designs -- 3.2.3 Unbalanced Designs -- 3.2.3.1 One‐Way ANOVA -- 3.2.3.2 Two‐Way ANOVA for Crossed Designs -- 3.2.3.3 Nested ANOVA -- 3.3 Regression Formulation, Estimability, and Contrasts -- 3.4 Coding Schemes -- 3.4.1 Codings for Balanced Designs -- 3.4.1.1 One‐Way Layout -- 3.4.1.2 Two‐Way Crossed Designs -- 3.4.1.3 Two‐Way Nested Designs -- 3.4.2 Codings for Unbalanced Designs -- 3.5 Advanced Models -- 3.5.1 Variance Component Models -- 3.5.2 Linear Mixed Models -- 3.5.2.1 General Idea -- 3.5.2.2 Estimation of Model Parameters -- 3.5.2.3 Repeated Measures ANOVA -- 3.5.2.4 Cross‐over Designs and Models -- 3.5.2.5 Longitudinal LMMs -- 3.6 Hasse Diagrams -- 3.6.1 Building a Hasse Diagram -- 3.7 Validation -- 3.7.1 Classical Tests Revisited -- 3.7.2 Expected Mean Squares from Hasse Diagrams -- 3.7.3 Permutation Tests -- 3.7.3.1 Exact Tests -- 3.7.3.2 Approximate Tests -- 3.8 Miscellaneous Models -- 3.8.1 Multivariate Analysis of Variance -- 3.8.1.1 Traditional Multivariate Analysis of Variance -- 3.8.1.2 Significance Testing in MANOVA -- 3.8.1.3 Regression Formulation of MANOVA -- 3.8.2 Multivariate LMMs -- 3.A.1 Proof -- 3.A.2 Relationships Between Codings -- 3.A.3 Practical Aspects of Codings -- Chapter 4 ASCA and Related Methods -- 4.1 ASCA -- 4.1.1 Basic Idea of ASCA -- 4.1.2 Properties of ASCA -- 4.1.3 Permutation Tests for ASCA -- 4.1.4 Back‐Projection -- 4.1.5 Scaling in ASCA -- 4.1.6 Group‐wise ASCA -- 4.1.7 Variable‐Selection ASCA -- 4.1.8 REP‐ASCA -- 4.1.9 ASCA as a Multivariate Multiple Regression Model -- 4.1.10 Geometry of ASCA -- 4.1.10.1 Geometry of ASCA in Row‐Space -- 4.1.10.2 Geometry of ASCA in Column‐Space -- 4.2 APCA -- 4.2.1 Basic Idea of APCA -- 4.2.2 Comparing APCA with ASCA -- 4.3 ASCA+ -- 4.3.1 Confidence Ellipsoids for ASCA.
4.3.2 ASCA and ASCA+ as RDA Models -- 4.4 Principal Response Curves -- 4.5 SMART -- 4.6 ASCA, PRC, and SMART Compared -- 4.7 MSCA -- 4.A.1 Proof of Equation -- 4.A.2 Proof of Equation -- Chapter 5 Alternative Methods -- 5.1 General Introduction -- 5.2 PLSR‐Based Methods -- 5.2.1 ANOVA‐TP -- 5.2.2 ANOVA Multiblock Orthogonal Partial Least Squares (AMOPLS) -- 5.3 LMM‐Based Methods -- 5.3.1 RM‐ASCA+ with Qualitative Time Models -- 5.3.2 Validation of the RM‐ASCA+ Model -- 5.3.2.1 Validation of RM‐ASCA+ Models with Nonparametric Bootstrap -- 5.3.2.2 Validation of RM‐ASCA+ Models with Permutation Testing -- 5.3.2.3 Visualization -- 5.3.2.4 RM‐ASCA+ with Quantitative Time Models -- 5.3.3 LiMM‐PCA -- 5.3.3.1 Validation -- 5.3.3.2 Visualization of Effects in LiMM‐PCA -- 5.4 Miscellaneous Methods -- 5.4.1 PC‐ANOVA -- 5.4.1.1 Basic Idea of PC‐ANOVA -- 5.4.1.2 Comparing PC‐ANOVA with ASCA -- 5.4.2 PARAFASCA -- 5.4.3 PE‐ASCA -- 5.4.4 rMANOVA -- 5.4.5 Fifty-Fifty MANOVA -- 5.4.6 AComDim -- 5.4.7 General Effect Modeling (GEM) -- Chapter 6 Distance‐based Methods -- 6.1 Introduction -- 6.1.1 Double Zeros -- 6.1.2 Horseshoe Effect -- 6.1.3 Compositionality -- 6.2 Methods -- 6.2.1 Principal Coordinate Analysis -- 6.2.2 PERMANOVA -- 6.2.2.1 PERMANOVA Calculated from the Gower Matrix -- 6.2.2.2 PERMANOVA of Non‐Euclidean Dissimilarity Matrices -- 6.2.3 Effect Sizes in PERMANOVA -- 6.2.4 Permutations in PERMANOVA -- 6.2.5 Assumptions for PERMANOVA -- 6.3 ANOSIM -- Chapter 7 Reviews and Reflections -- 7.1 Reviews -- 7.1.1 Metabolomics -- 7.1.1.1 Plant Science -- 7.1.1.2 Microbiology and Biotechnology -- 7.1.1.3 Animal Science -- 7.1.1.4 Human Science -- 7.1.2 Microbiome -- 7.1.3 Genomics -- 7.1.4 Proteomics -- 7.1.5 Food Science -- 7.1.6 Sensory Science -- 7.1.7 Chemistry -- 7.2 Reflections -- 7.2.1 Summary of Reviews -- 7.2.2 Overview of Methods.
7.2.3 Remaining Challenges -- 7.2.3.1 ASCA+ and Partial RDA -- 7.2.3.2 Permutations: Correlations and Unbalancedness -- 7.2.3.3 PERMANOVA and Effect Sizes -- 7.2.3.4 Back‐Projection Approach -- 7.2.3.5 Inferential Statistics -- 7.2.3.6 Advanced HD‐ANOVA Methods -- Chapter 8 Software -- 8.1 HD‐ANOVA Software -- 8.2 R Package HDANOVA -- 8.3 Installing and Starting the Package -- 8.4 Data Handling -- 8.4.1 Read from File -- 8.4.2 Data Pre‐processing -- 8.4.2.1 Re‐coding Categorical data -- 8.4.3 Data Structures for Analysis Including Blocks -- 8.4.3.1 Create List of Blocks -- 8.4.3.2 Create data.frame of Blocks -- 8.5 Analysis of Variance (ANOVA) -- 8.5.1 Simulated Data -- 8.5.2 Fixed Effect Models -- 8.5.2.1 One‐Way ANOVA -- 8.5.2.2 Two‐Way Crossed Effects ANOVA -- 8.5.2.3 Types of Sums of Squares -- 8.5.2.4 Coding Schemes -- 8.5.2.5 Fixed Effect Nested ANOVA -- 8.5.3 Linear Mixed Models -- 8.5.3.1 Least Squares − mixlm -- 8.5.3.2 Restrictions -- 8.5.3.3 Repeated Measures -- 8.5.3.4 REML -- 8.5.4 Multivariate ANOVA (MANOVA) -- 8.6 Basic ASCA Family -- 8.6.1 Fit ASCA Model -- 8.6.1.1 Permutation Testing -- 8.6.1.2 Random Effects -- 8.6.1.3 Scores and Loadings -- 8.6.1.4 Data Ellipsoids and Confidence Ellipsoids -- 8.6.1.5 Combined Effects -- 8.6.1.6 Quantitative Effects -- 8.6.2 ANOVA‐PCA (APCA) -- 8.6.3 PC‐ANOVA -- 8.6.4 MSCA -- 8.6.5 LiMM‐PCA -- 8.6.6 Repeated Measures ASCA -- 8.7 Alternative Methods -- 8.7.1 Principal Response Curves (PRC) -- 8.7.2 Permutation‐Based MANOVA (PERMANOVA) -- 8.8 Software Packages -- 8.8.1 R Packages -- 8.8.2 MATLAB Toolboxes -- 8.8.3 Python -- References -- Index -- EULA.
Record Nr. UNINA-9911020059203321
Smilde Age K  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of statistics to industrial experimentation [[electronic resource] /] / Cuthbert Daniel
Applications of statistics to industrial experimentation [[electronic resource] /] / Cuthbert Daniel
Autore Daniel Cuthbert
Pubbl/distr/stampa New York, : Wiley, c1976
Descrizione fisica 1 online resource (321 p.)
Disciplina 607
607.2
Collana Wiley Series in Probability and Statistics
Soggetto topico Experimental design
Research, Industrial - Statistical methods
Soggetto genere / forma Electronic books.
ISBN 1-282-30727-4
9786612307270
0-470-31646-2
0-470-31717-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto APPLICATIONS OF STATISTICS TO INDUSTRIAL EXPERIMENTATION; Preface; Acknowledgments; Contents; Chapter 1 Introduction; 1.1 The range of industrial research; 1.2 Scientific methods; 1.3 Making each piece of data work twice; 1.4 First stages in planning industrial experiments; 1.5 Statistical background required; 1.6 Doing the arithmetic; 1.7 Sequences of experiments; 1.8 The future of "industrial" designs; Chapter 2 Simple Comparison Experiments; 2.1 An example; 2.2 The effect of a Factor?; Chapter 3 Two Factors, Each at Two Levels; 3.1. Introduction; 3.2 Factorial representations
3.3 Yates's algorithm for effects in the 223.4 Interpretation of a factorial experiment when interactions are present; 3.5 Intermediate summary; 3.6 The replicated22; 3.6.1 General remarks on replication; 3.6.2 Limitations of randomization; 3.6.3 When is randomization useful?; 3.6.4 An example; 3.7 Summary; Appendix 3.A The analysis of variance identities; Chapter 4 Two Factors, Each at Three Levels; 4.1 Introduction; 4.2 Both factors have numerically scaled levels,; 4.3 Standard computations in a 32; 4.4 One-cell interaction; 4.5 Simpler interpretation of ALBQ, AQBL and AQBQ
4.6 Tukey's test for multiplicative nonadditivity4.7 An eyeball test for interaction; 4.8 What is the answer? (What is the question?); 4.9 An unreplicated 32 on air-pollution data; 4.10 The 32 with both factors discontinuous; 4.11 The 32 with one factor continuous, one discrete-leveled; 4.12 Summary; Appendix 4.A Critical values of the maximum normed residual (MNR); Chapter 5 Unrepticated Three-Factor, Two-Level Experiments; 5.1 When to use the 23; 5.2 A real 23; 5.3 Yates's table of signs; 5.4 Yates's algorithm for the 23; 5.5 First interpretation of the 23; 5.6 Reverse Yatcs's algorithm
5.7 Interpretation with one factor discontinuous5.8 Representation when two factors are continuous; 5.9 Contours of standard error of fitted Y; 5.10 A numerical check for Yates's 2P-aIgorithm; 5.11 Interpretation of the 23; 5.12 One bad value in a 23+o; 5.13 Blocking the 23; 5.14 Summary; Appendix 5.A The variance of linear functions of uncorrelated random variables; Chapter 6 Unreplicated Four-Factor, Two-Level Experiments; 6.1 Introduction; 6.2 The first computations; 6.3 Interpretation of the first computations; 6.3.1 The empirical cumulative distribution of the residuals
6.3.2 The dy versus Y plot6.4 Looking for simple models; 6.5 A note on rounding in Yates's algorithm; 6.6 Snares (and delusions); Appendix 6.A Forty empirical cumulation distributions, independent standard normal deviates; Chapter 7 Three Five-Factor, Two-Level Unreplicated Experiments; 7.1 Introduction; 7.2 Yates's 25 on beans; 7.2.1 Description; 7.2.2 Standard computations; 7.2.3 Residuals in place; 7.2.4 Dropping the factorial representation; 7.2.5 A common result: IAl = IBI = IABl; 7.3 Davies' 25 on penicillin; 7.3.1 Description; 7.3.2 When to log; 7.3.3 A bad value
7.3.4 Effects of factors on residuals
Record Nr. UNINA-9910139987103321
Daniel Cuthbert  
New York, : Wiley, c1976
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui