top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analytic number theory : exploring the anatomy of integers / Jean-Marie De Koninck, Florian Luca
Analytic number theory : exploring the anatomy of integers / Jean-Marie De Koninck, Florian Luca
Autore Koninck, J. M. de
Pubbl/distr/stampa Providence, R. I. : American Mathematical Society, c2012
Descrizione fisica xviii, 414 p. : ill. ; 26 cm
Disciplina 512.74
Altri autori (Persone) Luca, Florianauthor
Collana Graduate studies in mathematics, 1065-7339 ; 134
Soggetto topico Number theory
Euclidean algorithm
Integrals
ISBN 9780821875773
Classificazione LC QA241.K6855
AMS 11A05
AMS 11A41
AMS 11B05
AMS 11B39
AMS 11K65
AMS 11N05
AMS 11N13
AMS 11N35
AMS 11N37
AMS 11N60
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001827729707536
Koninck, J. M. de  
Providence, R. I. : American Mathematical Society, c2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan
Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan
Autore Lu Shanzhen <1939->
Pubbl/distr/stampa New York : , : Springer, , 2013
Descrizione fisica 1 online resource (385 p.)
Disciplina 515.2433
Altri autori (Persone) YanDunyan
Soggetto topico Fourier series
Euclidean algorithm
Soggetto genere / forma Electronic books.
ISBN 981-4458-77-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere
3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case
4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index
Record Nr. UNINA-9910452733703321
Lu Shanzhen <1939->  
New York : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
Autore Lu Shanzhen <1939->
Pubbl/distr/stampa New Jersey : , : World Scientific, , [2013]
Descrizione fisica 1 online resource (viii, 376 pages) : illustrations
Disciplina 515.2433
Collana Gale eBooks
Soggetto topico Fourier series
Euclidean algorithm
Fourier series - Mathematical models
Euclidean algorithm - Mathematical models
ISBN 981-4458-77-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere
3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case
4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index
Record Nr. UNINA-9910790428703321
Lu Shanzhen <1939->  
New Jersey : , : World Scientific, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
Autore Lu Shanzhen <1939->
Pubbl/distr/stampa New Jersey : , : World Scientific, , [2013]
Descrizione fisica 1 online resource (viii, 376 pages) : illustrations
Disciplina 515.2433
Collana Gale eBooks
Soggetto topico Fourier series
Euclidean algorithm
Fourier series - Mathematical models
Euclidean algorithm - Mathematical models
ISBN 981-4458-77-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere
3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case
4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index
Record Nr. UNINA-9910815200403321
Lu Shanzhen <1939->  
New Jersey : , : World Scientific, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lectures on number theory / presented by Adolf Hurwitz ; ed. Nikolaos Kritikos ; transl. with some additional material by William C. Schulz
Lectures on number theory / presented by Adolf Hurwitz ; ed. Nikolaos Kritikos ; transl. with some additional material by William C. Schulz
Autore Hurwitz, Adolf
Pubbl/distr/stampa New York : Springer-Verlag, 1986
Descrizione fisica xiv, 273 p. : 23 cm.
Disciplina 512.73
Altri autori (Persone) Kritikos, Nikolaos
Schulz, William
Collana Universitext
Soggetto topico Euclidean algorithm
Multiplicative structure
Number theory-textbooks
Reciprocity
ISBN 0387962360
Classificazione AMS 11-01
AMS 11-XX
AMS 11A05
AMS 11A15
AMS 11C99
QA241.H85
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001067629707536
Hurwitz, Adolf  
New York : Springer-Verlag, 1986
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Linear algebra, rational approximation, and orthogonal polynomials [e-book] / Adhemar Bultheel, Marc van Barel
Linear algebra, rational approximation, and orthogonal polynomials [e-book] / Adhemar Bultheel, Marc van Barel
Autore Bultheel, Adhemar
Pubbl/distr/stampa Amsterdam ; New York : Elsevier, 1997
Descrizione fisica xvii, 446 p. : ill. ; 25 cm
Disciplina 512.72
Altri autori (Persone) Barel, Marc vanauthor
Collana Studies in computational mathematics ; 6
Soggetto topico Euclidean algorithm
Algebras, Linear
Orthogonal polynomials
ISBN 9780444828729
0444828729
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003277529707536
Bultheel, Adhemar  
Amsterdam ; New York : Elsevier, 1997
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Near Extensions and Alignment of Data in R^n : Whitney Extensions of near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space / / Steven B. Damelin
Near Extensions and Alignment of Data in R^n : Whitney Extensions of near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space / / Steven B. Damelin
Autore Damelin Steven B.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons Ltd, , [2024]
Descrizione fisica 1 online resource (186 pages)
Disciplina 516.3
Soggetto topico Geometry, Analytic
Mathematical analysis
Rigidity (Geometry)
Nomography (Mathematics)
Euclidean algorithm
Isometrics (Mathematics)
ISBN 1-394-19681-4
1-394-19679-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Near Extensions and Alignment of Data in R -- Contents -- Preface -- Overview -- Structure -- 1 Variants 1-2 -- 1.1 The Whitney Extension Problem -- 1.2 Variants (1-2) -- 1.3 Variant 2 -- 1.4 Visual Object Recognition and an Equivalence Problem in R -- 1.5 Procrustes: The Rigid Alignment Problem -- 1.6 Non-rigid Alignment -- 2 Building -distortions: Slow Twists, Slides -- 2.1 c-distorted Diffeomorphisms -- 2.2 Slow Twists -- 2.3 Slides -- 2.4 Slow Twists: Action -- 2.5 Fast Twists -- 2.6 Iterated Slow Twists -- 2.7 Slides: Action -- 2.8 Slides at Different Distances -- 2.9 3D Motions -- 2.10 3D Slides -- 2.11 Slow Twists and Slides: Theorem 2.1 -- 2.12 Theorem 2.2 -- 3 Counterexample to Theorem 2.2 (part (1)) for card (E )> -- d -- 3.1 Theorem 2.2 (part (1)), Counterexample: k> -- d -- 3.2 Removing the Barrier k> -- d in Theorem 2.2 (part (1)) -- 4 Manifold Learning, Near-isometric Embeddings, Compressed Sensing, Johnson-Lindenstrauss and Some Applications Related to the near Whitney extension problem -- 4.1 Manifold and Deep Learning Via c-distorted Diffeomorphisms -- 4.2 Near Isometric Embeddings, Compressive Sensing, Johnson-Lindenstrauss and Applications Related to c-distorted Diffeomorphisms -- 4.3 Restricted Isometry -- 5 Clusters and Partitions -- 5.1 Clusters and Partitions -- 5.2 Similarity Kernels and Group Invariance -- 5.3 Continuum Limits of Shortest Paths Through Random Points and Shortest Path Clustering -- 5.3.1 Continuum Limits of Shortest Paths Through Random Points: The Observation -- 5.3.2 Continuum Limits of Shortest Paths Through Random Points: The Set Up -- 5.4 Theorem 5.6 -- 5.5 p-powerWeighted Shortest Path Distance and Longest-leg Path Distance -- 5.6 p-wspm,Well Separation Algorithm Fusion -- 5.7 Hierarchical Clustering in Rd -- 6 The Proof of Theorem 2.3 -- 6.1 Proof of Theorem 2.3 (part(2)).
6.2 A Special Case of the Proof of Theorem 2.3 (part (1)) -- 6.3 The Remaining Proof of Theorem 2.3 (part (1)) -- 7 Tensors, Hyperplanes, Near Reflections, Constants ( , , K) -- 7.1 Hyperplane -- We Meet the Positive Constant -- 7.2 "Well Separated" -- We Meet the Positive Constant -- 7.3 Upper Bound for Card (E) -- We Meet the Positive Constant K -- 7.4 Theorem 7.11 -- 7.5 Near Reflections -- 7.6 Tensors,Wedge Product, and Tensor Product -- 8 Algebraic Geometry: Approximation-varieties, Lojasiewicz, Quantification: ( , )-Theorem 2.2 (part (2)) -- 8.1 Min-max Optimization and Approximation-varieties -- 8.2 Min-max Optimization and Convexity -- 9 Building -distortions: Near Reflections -- 9.1 Theorem 9.14 -- 9.2 Proof of Theorem 9.14 -- 10 -distorted diffeomorphisms, O(d) and Functions of Bounded Mean Oscillation (BMO) -- 10.1 BMO -- 10.2 The John-Nirenberg Inequality -- 10.3 Main Results -- 10.4 Proof of Theorem 10.17 -- 10.5 Proof of Theorem 10.18 -- 10.6 Proof of Theorem 10.19 -- 10.7 An Overdetermined System -- 10.8 Proof of Theorem 10.16 -- 11 Results: A Revisit of Theorem 2.2 (part (1)) -- 11.1 Theorem 11.21 -- 11.2 blocks -- 11.3 Finiteness Principle -- 12 Proofs: Gluing and Whitney Machinery -- 12.1 Theorem 11.23 -- 12.2 The Gluing Theorem -- 12.3 Hierarchical Clusterings of Finite Subsets of Rd Revisited -- 12.4 Proofs of Theorem 11.27 and Theorem 11.28 -- 12.5 Proofs of Theorem 11.31, Theorem 11.30 and Theorem 11.29 -- 13 Extensions of Smooth Small Distortions [41]: Introduction -- 13.1 Class of Sets E -- 13.2 Main Result -- 14 Extensions of Smooth Small Distortions: First Results -- Lemma 14.1 -- Lemma 14.2 -- Lemma 14.3 -- Lemma 14.4 -- Lemma 14.5 -- 15 Extensions of Smooth Small Distortions: Cubes, Partitions of Unity, Whitney Machinery -- 15.1 Cubes -- 15.2 Partition of Unity -- 15.3 Regularized Distance.
16 Extensions of Smooth Small Distortions: Picking Motions -- Lemma 16.1 -- Lemma 16.2 -- 17 Extensions of Smooth Small Distortions: Unity Partitions -- 18 Extensions of Smooth Small Distortions: Function Extension -- Lemma 18.1 -- Lemma 18.2 -- 19 Equidistribution: Extremal Newtonian-like Configurations, Group Invariant Discrepancy, Finite Fields, Combinatorial Designs, Linear Independent Vectors, Matroids and the Maximum Distance Separable Conjecture -- 19.1 s-extremal Configurations and Newtonian s-energy -- 19.2 [−1, 1] -- 19.2.1 Critical Transition -- 19.2.2 Distribution of s-extremal Configurations -- 19.2.3 Equally Spaced Points for Interpolation -- 19.3 The n-dimensional Sphere, Sn Embedded in Rn +1 -- 19.3.1 Critical Transition -- 19.4 Torus -- 19.5 Separation Radius and Mesh Norm for s-extremal Configurations -- 19.5.1 Separation Radius of s> -- n-extremal Configurations on a Set Yn -- 19.5.2 Separation Radius of s< -- n − 1-extremal Configurations on Sn -- 19.5.3 Mesh Norm of s-extremal Configurations on a Set Yn -- 19.6 Discrepancy of Measures, Group Invariance -- 19.7 Finite Field Algorithm -- 19.7.1 Examples -- 19.7.2 Spherical ̂t-designs -- 19.7.3 Extension to Finite Fields of Odd Prime Powers -- 19.8 Combinatorial Designs, Linearly Independent Vectors, MDS Conjecture -- 19.8.1 The Case q=2 -- 19.8.2 The General Case -- 19.8.3 The Maximum Distance Separable Conjecture -- 20 Covering of SU(2) and Quantum Lattices -- 20.1 Structure of SU(2) -- 20.2 Universal Sets -- 20.3 Covering Exponent -- 20.4 An Efficient Universal Set in PSU(2) -- 21 The Unlabeled Correspondence Configuration Problem and Optimal Transport -- 21.1 Unlabeled Correspondence Configuration Problem -- 21.1.1 Non-reconstructible Configurations -- 21.1.2 Example -- 21.1.3 Partition Into Polygons -- 21.1.4 Considering Areas of Triangles-10-step Algorithm.
21.1.5 Graph Point of View -- 21.1.6 Considering Areas of Quadrilaterals -- 21.1.7 Partition Into Polygons for Small Distorted Pairwise Distances -- 21.1.8 Areas of Triangles for Small Distorted Pairwise Distances -- 21.1.9 Considering Areas of Triangles (part 2) -- 21.1.10 Areas of Quadrilaterals for Small Distorted Pairwise Distances -- 21.1.11 Considering Areas of Quadrilaterals (part 2) -- 22 A Short Section on Optimal Transport -- 23 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830377603321
Damelin Steven B.  
Hoboken, NJ : , : John Wiley & Sons Ltd, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rational sphere maps / / John P. D'Angelo
Rational sphere maps / / John P. D'Angelo
Autore D'Angelo John P.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (244 pages)
Disciplina 515.53
Collana Progress in Mathematics
Soggetto topico Spherical functions
Euclidean algorithm
Funcions esferoïdals
Algorismes
Soggetto genere / forma Llibres electrònics
ISBN 3-030-75809-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Complex Euclidean Space -- 1 Generalities -- 2 The Groups Aut(mathbbB1), SU(2), and SU(1,1) -- 3 Automorphisms of the Unit Ball -- 4 Hermitian Forms -- 5 Proper Mappings -- 6 Some Counting -- 7 A GPS for This Book -- 2 Examples and Properties of Rational Sphere Maps -- 1 Definition and Basic Results about Rational Sphere Maps -- 2 Sphere-Ranks and Target-Ranks -- 3 Ranks of Products -- 4 Juxtaposition -- 5 The Tensor Product Operation -- 6 The Restricted Tensor Product Operation -- 7 An Abundance of Rational Sphere Maps -- 8 Some Results in Low Codimension -- 9 A Result in Sufficiently High Codimension -- 10 Homotopy and Target-Rank -- 11 Remarks on Degree Bounds -- 12 Inverse Image of a Point -- 13 The General Rational Sphere Map -- 14 A Detailed Rational Example -- 15 An Example in Source Dimension 3 -- 3 Monomial Sphere Maps -- 1 Properties of Monomial Sphere Maps -- 2 Some Remarkable Monomial Sphere Maps -- 3 More on These Remarkable Polynomials -- 4 Cyclic Groups and Monomial Sphere Maps -- 5 Circulant Matrices -- 6 The Pell Equation -- 7 Elaboration of the Method for Producing Sharp Polynomials -- 8 Additional Tricks -- 9 Maps with Source Dimension 2 and Target Dimension 4 -- 10 Target-Ranks for Monomial Sphere Maps -- 4 Monomial Sphere Maps and Linear Programming -- 1 Underdetermined Linear Systems -- 2 An Optimization Problem for Monomial Sphere Maps -- 3 Two Detailed Examples in Source Dimension 2 -- 4 Results of Coding and Consequences in Source Dimension 2 -- 5 Monomial Sphere Maps in Higher Dimension -- 6 Sparseness in Source Dimension 2 -- 7 Sparseness in Source Dimension at Least Three -- 8 The Optimal Polynomials in Degrees 9 and 11 -- 9 Coding -- 5 Groups Associated with Holomorphic Mappings -- 1 Five Groups -- 2 Examples of the Five Groups -- 3 Hermitian-Invariant Groups for Rational Sphere Maps.
4 Additional Examples -- 5 Behavior of Γf Under Various Constructions -- 6 Examples Involving the Symmetric Group -- 7 The Symmetric Group -- 8 Groups Arising from Rational Sphere Maps -- 9 Different Representations -- 10 Additional Results -- 11 A Criterion for Being a Polynomial -- 6 Elementary Complex and CR Geometry -- 1 Subvarieties of the Unit Ball -- 2 The Unbounded Realization of the Unit Sphere -- 3 Geometry of Real Hypersurfaces -- 4 CR Functions and Mappings -- 5 Strong Pseudoconvexity of the Unit Sphere -- 6 Comparison with the Real Case -- 7 Varieties Associated with Rational Sphere Maps -- 8 Examples of Xf -- 9 A Return to the Definition of Rational Sphere Map -- 7 Geometric Properties of Rational Sphere Maps -- 1 Volumes -- 2 A Geometric Result in One Dimension -- 3 An Integral Inequality -- 4 Volume Inequalities for Polynomial and Rational Sphere Maps -- 5 Comparison with a Real Variable Integral Inequality -- 8 List of Open Problems -- Appendix Bibliography -- -- Index.
Record Nr. UNISA-996466408403316
D'Angelo John P.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui