Analytic number theory : exploring the anatomy of integers / Jean-Marie De Koninck, Florian Luca
| Analytic number theory : exploring the anatomy of integers / Jean-Marie De Koninck, Florian Luca |
| Autore | Koninck, J. M. de |
| Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, c2012 |
| Descrizione fisica | xviii, 414 p. : ill. ; 26 cm |
| Disciplina | 512.74 |
| Altri autori (Persone) | Luca, Florianauthor |
| Collana | Graduate studies in mathematics, 1065-7339 ; 134 |
| Soggetto topico |
Number theory
Euclidean algorithm Integrals |
| ISBN | 9780821875773 |
| Classificazione |
LC QA241.K6855
AMS 11A05 AMS 11A41 AMS 11B05 AMS 11B39 AMS 11K65 AMS 11N05 AMS 11N13 AMS 11N35 AMS 11N37 AMS 11N60 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001827729707536 |
Koninck, J. M. de
|
||
| Providence, R. I. : American Mathematical Society, c2012 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan
| Bochner-Riesz means on euclidean spaces / / Shanzhen Lu, Dunyan Yan |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New York : , : Springer, , 2013 |
| Descrizione fisica | 1 online resource (385 p.) |
| Disciplina | 515.2433 |
| Altri autori (Persone) | YanDunyan |
| Soggetto topico |
Fourier series
Euclidean algorithm |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910452733703321 |
Lu Shanzhen <1939->
|
||
| New York : , : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
| Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2013] |
| Descrizione fisica | 1 online resource (viii, 376 pages) : illustrations |
| Disciplina | 515.2433 |
| Collana | Gale eBooks |
| Soggetto topico |
Fourier series
Euclidean algorithm Fourier series - Mathematical models Euclidean algorithm - Mathematical models |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910790428703321 |
Lu Shanzhen <1939->
|
||
| New Jersey : , : World Scientific, , [2013] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China
| Bochner-Riesz means on Euclidean spaces / / Shanzhen Lu, Beijing Normal University, China, Dunyan Yan, University of Chinese Academy of Sciences, China |
| Autore | Lu Shanzhen <1939-> |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2013] |
| Descrizione fisica | 1 online resource (viii, 376 pages) : illustrations |
| Disciplina | 515.2433 |
| Collana | Gale eBooks |
| Soggetto topico |
Fourier series
Euclidean algorithm Fourier series - Mathematical models Euclidean algorithm - Mathematical models |
| ISBN | 981-4458-77-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; 1 An introduction to multiple Fourier series; 1.1 Basic properties of multiple Fourier series; 1.2 Poisson summation formula; 1.3 Convergence and the opposite results; 1.4 Linear summation; 2 Bochner-Riesz means of multiple Fourier integral; 2.1 Localization principle and classic results on fixed-point convergence; 2.2 Lp-convergence; 2.3 Some basic facts on multipliers; 2.4 The disc conjecture and Fefferman theorem; 2.5 The Lp-boundedness of Bochner-Riesz operator Tα with α > 0; 2.6 Oscillatory integral and proof of Carleson-Sjolin theorem; 2.6.1 Oscillatory integrals
2.6.2 Proof of Carleson-Sjolin theorem2.7 Kakeya maximal function; 2.8 The restriction theorem of the Fourier transform; 2.9 The case of radial functions; 2.10 Almost everywhere convergence; 2.11 Commutator of Bochner-Riesz operator; 3 Bochner-Riesz means of multiple Fourier series; 3.1 The case of being over the critical index; 3.1.1 Bochner formula; 3.1.2 The localization theorem; 3.1.3 The maximal operator Sα*; 3.2 The case of the critical index (general discussion); 3.2.1 Localization problems; 3.2.2 An example of being divergent almost everywhere 3.9 The saturation problem of the uniform approximation3.10 Strong summation; 4 The conjugate Fourier integral and series; 4.1 The conjugate integral and the estimate of the kernel; 4.2 Convergence of Bochner-Riesz means for conjugate Fourier integral; 4.3 The conjugate Fourier series; 4.4 Kernel of Bochner-Riesz means of conjugate Fourier series; 4.5 The maximal operator of the conjugate partial sum; 4.6 The relations between the conjugate series and integral; 4.7 Convergence of Bochner-Riesz means of conjugate Fourier series; 4.8 (C,1) means in the conjugate case 4.9 The strong summation of the conjugate Fourier series4.10 Approximation of continuous functions; Bibliography; Index |
| Record Nr. | UNINA-9910815200403321 |
Lu Shanzhen <1939->
|
||
| New Jersey : , : World Scientific, , [2013] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lectures on number theory / presented by Adolf Hurwitz ; ed. Nikolaos Kritikos ; transl. with some additional material by William C. Schulz
| Lectures on number theory / presented by Adolf Hurwitz ; ed. Nikolaos Kritikos ; transl. with some additional material by William C. Schulz |
| Autore | Hurwitz, Adolf |
| Pubbl/distr/stampa | New York : Springer-Verlag, 1986 |
| Descrizione fisica | xiv, 273 p. : 23 cm. |
| Disciplina | 512.73 |
| Altri autori (Persone) |
Kritikos, Nikolaos
Schulz, William |
| Collana | Universitext |
| Soggetto topico |
Euclidean algorithm
Multiplicative structure Number theory-textbooks Reciprocity |
| ISBN | 0387962360 |
| Classificazione |
AMS 11-01
AMS 11-XX AMS 11A05 AMS 11A15 AMS 11C99 QA241.H85 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001067629707536 |
Hurwitz, Adolf
|
||
| New York : Springer-Verlag, 1986 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Linear algebra, rational approximation, and orthogonal polynomials [e-book] / Adhemar Bultheel, Marc van Barel
| Linear algebra, rational approximation, and orthogonal polynomials [e-book] / Adhemar Bultheel, Marc van Barel |
| Autore | Bultheel, Adhemar |
| Pubbl/distr/stampa | Amsterdam ; New York : Elsevier, 1997 |
| Descrizione fisica | xvii, 446 p. : ill. ; 25 cm |
| Disciplina | 512.72 |
| Altri autori (Persone) | Barel, Marc vanauthor |
| Collana | Studies in computational mathematics ; 6 |
| Soggetto topico |
Euclidean algorithm
Algebras, Linear Orthogonal polynomials |
| ISBN |
9780444828729
0444828729 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003277529707536 |
Bultheel, Adhemar
|
||
| Amsterdam ; New York : Elsevier, 1997 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Near Extensions and Alignment of Data in R^n : Whitney Extensions of near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space / / Steven B. Damelin
| Near Extensions and Alignment of Data in R^n : Whitney Extensions of near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space / / Steven B. Damelin |
| Autore | Damelin Steven B. |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons Ltd, , [2024] |
| Descrizione fisica | 1 online resource (186 pages) |
| Disciplina | 516.3 |
| Soggetto topico |
Geometry, Analytic
Mathematical analysis Rigidity (Geometry) Nomography (Mathematics) Euclidean algorithm Isometrics (Mathematics) |
| ISBN |
1-394-19681-4
1-394-19679-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Near Extensions and Alignment of Data in R -- Contents -- Preface -- Overview -- Structure -- 1 Variants 1-2 -- 1.1 The Whitney Extension Problem -- 1.2 Variants (1-2) -- 1.3 Variant 2 -- 1.4 Visual Object Recognition and an Equivalence Problem in R -- 1.5 Procrustes: The Rigid Alignment Problem -- 1.6 Non-rigid Alignment -- 2 Building -distortions: Slow Twists, Slides -- 2.1 c-distorted Diffeomorphisms -- 2.2 Slow Twists -- 2.3 Slides -- 2.4 Slow Twists: Action -- 2.5 Fast Twists -- 2.6 Iterated Slow Twists -- 2.7 Slides: Action -- 2.8 Slides at Different Distances -- 2.9 3D Motions -- 2.10 3D Slides -- 2.11 Slow Twists and Slides: Theorem 2.1 -- 2.12 Theorem 2.2 -- 3 Counterexample to Theorem 2.2 (part (1)) for card (E )> -- d -- 3.1 Theorem 2.2 (part (1)), Counterexample: k> -- d -- 3.2 Removing the Barrier k> -- d in Theorem 2.2 (part (1)) -- 4 Manifold Learning, Near-isometric Embeddings, Compressed Sensing, Johnson-Lindenstrauss and Some Applications Related to the near Whitney extension problem -- 4.1 Manifold and Deep Learning Via c-distorted Diffeomorphisms -- 4.2 Near Isometric Embeddings, Compressive Sensing, Johnson-Lindenstrauss and Applications Related to c-distorted Diffeomorphisms -- 4.3 Restricted Isometry -- 5 Clusters and Partitions -- 5.1 Clusters and Partitions -- 5.2 Similarity Kernels and Group Invariance -- 5.3 Continuum Limits of Shortest Paths Through Random Points and Shortest Path Clustering -- 5.3.1 Continuum Limits of Shortest Paths Through Random Points: The Observation -- 5.3.2 Continuum Limits of Shortest Paths Through Random Points: The Set Up -- 5.4 Theorem 5.6 -- 5.5 p-powerWeighted Shortest Path Distance and Longest-leg Path Distance -- 5.6 p-wspm,Well Separation Algorithm Fusion -- 5.7 Hierarchical Clustering in Rd -- 6 The Proof of Theorem 2.3 -- 6.1 Proof of Theorem 2.3 (part(2)).
6.2 A Special Case of the Proof of Theorem 2.3 (part (1)) -- 6.3 The Remaining Proof of Theorem 2.3 (part (1)) -- 7 Tensors, Hyperplanes, Near Reflections, Constants ( , , K) -- 7.1 Hyperplane -- We Meet the Positive Constant -- 7.2 "Well Separated" -- We Meet the Positive Constant -- 7.3 Upper Bound for Card (E) -- We Meet the Positive Constant K -- 7.4 Theorem 7.11 -- 7.5 Near Reflections -- 7.6 Tensors,Wedge Product, and Tensor Product -- 8 Algebraic Geometry: Approximation-varieties, Lojasiewicz, Quantification: ( , )-Theorem 2.2 (part (2)) -- 8.1 Min-max Optimization and Approximation-varieties -- 8.2 Min-max Optimization and Convexity -- 9 Building -distortions: Near Reflections -- 9.1 Theorem 9.14 -- 9.2 Proof of Theorem 9.14 -- 10 -distorted diffeomorphisms, O(d) and Functions of Bounded Mean Oscillation (BMO) -- 10.1 BMO -- 10.2 The John-Nirenberg Inequality -- 10.3 Main Results -- 10.4 Proof of Theorem 10.17 -- 10.5 Proof of Theorem 10.18 -- 10.6 Proof of Theorem 10.19 -- 10.7 An Overdetermined System -- 10.8 Proof of Theorem 10.16 -- 11 Results: A Revisit of Theorem 2.2 (part (1)) -- 11.1 Theorem 11.21 -- 11.2 blocks -- 11.3 Finiteness Principle -- 12 Proofs: Gluing and Whitney Machinery -- 12.1 Theorem 11.23 -- 12.2 The Gluing Theorem -- 12.3 Hierarchical Clusterings of Finite Subsets of Rd Revisited -- 12.4 Proofs of Theorem 11.27 and Theorem 11.28 -- 12.5 Proofs of Theorem 11.31, Theorem 11.30 and Theorem 11.29 -- 13 Extensions of Smooth Small Distortions [41]: Introduction -- 13.1 Class of Sets E -- 13.2 Main Result -- 14 Extensions of Smooth Small Distortions: First Results -- Lemma 14.1 -- Lemma 14.2 -- Lemma 14.3 -- Lemma 14.4 -- Lemma 14.5 -- 15 Extensions of Smooth Small Distortions: Cubes, Partitions of Unity, Whitney Machinery -- 15.1 Cubes -- 15.2 Partition of Unity -- 15.3 Regularized Distance. 16 Extensions of Smooth Small Distortions: Picking Motions -- Lemma 16.1 -- Lemma 16.2 -- 17 Extensions of Smooth Small Distortions: Unity Partitions -- 18 Extensions of Smooth Small Distortions: Function Extension -- Lemma 18.1 -- Lemma 18.2 -- 19 Equidistribution: Extremal Newtonian-like Configurations, Group Invariant Discrepancy, Finite Fields, Combinatorial Designs, Linear Independent Vectors, Matroids and the Maximum Distance Separable Conjecture -- 19.1 s-extremal Configurations and Newtonian s-energy -- 19.2 [−1, 1] -- 19.2.1 Critical Transition -- 19.2.2 Distribution of s-extremal Configurations -- 19.2.3 Equally Spaced Points for Interpolation -- 19.3 The n-dimensional Sphere, Sn Embedded in Rn +1 -- 19.3.1 Critical Transition -- 19.4 Torus -- 19.5 Separation Radius and Mesh Norm for s-extremal Configurations -- 19.5.1 Separation Radius of s> -- n-extremal Configurations on a Set Yn -- 19.5.2 Separation Radius of s< -- n − 1-extremal Configurations on Sn -- 19.5.3 Mesh Norm of s-extremal Configurations on a Set Yn -- 19.6 Discrepancy of Measures, Group Invariance -- 19.7 Finite Field Algorithm -- 19.7.1 Examples -- 19.7.2 Spherical ̂t-designs -- 19.7.3 Extension to Finite Fields of Odd Prime Powers -- 19.8 Combinatorial Designs, Linearly Independent Vectors, MDS Conjecture -- 19.8.1 The Case q=2 -- 19.8.2 The General Case -- 19.8.3 The Maximum Distance Separable Conjecture -- 20 Covering of SU(2) and Quantum Lattices -- 20.1 Structure of SU(2) -- 20.2 Universal Sets -- 20.3 Covering Exponent -- 20.4 An Efficient Universal Set in PSU(2) -- 21 The Unlabeled Correspondence Configuration Problem and Optimal Transport -- 21.1 Unlabeled Correspondence Configuration Problem -- 21.1.1 Non-reconstructible Configurations -- 21.1.2 Example -- 21.1.3 Partition Into Polygons -- 21.1.4 Considering Areas of Triangles-10-step Algorithm. 21.1.5 Graph Point of View -- 21.1.6 Considering Areas of Quadrilaterals -- 21.1.7 Partition Into Polygons for Small Distorted Pairwise Distances -- 21.1.8 Areas of Triangles for Small Distorted Pairwise Distances -- 21.1.9 Considering Areas of Triangles (part 2) -- 21.1.10 Areas of Quadrilaterals for Small Distorted Pairwise Distances -- 21.1.11 Considering Areas of Quadrilaterals (part 2) -- 22 A Short Section on Optimal Transport -- 23 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910830377603321 |
Damelin Steven B.
|
||
| Hoboken, NJ : , : John Wiley & Sons Ltd, , [2024] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Rational sphere maps / / John P. D'Angelo
| Rational sphere maps / / John P. D'Angelo |
| Autore | D'Angelo John P. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina | 515.53 |
| Collana | Progress in Mathematics |
| Soggetto topico |
Spherical functions
Euclidean algorithm Funcions esferoïdals Algorismes |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-75809-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- 1 Complex Euclidean Space -- 1 Generalities -- 2 The Groups Aut(mathbbB1), SU(2), and SU(1,1) -- 3 Automorphisms of the Unit Ball -- 4 Hermitian Forms -- 5 Proper Mappings -- 6 Some Counting -- 7 A GPS for This Book -- 2 Examples and Properties of Rational Sphere Maps -- 1 Definition and Basic Results about Rational Sphere Maps -- 2 Sphere-Ranks and Target-Ranks -- 3 Ranks of Products -- 4 Juxtaposition -- 5 The Tensor Product Operation -- 6 The Restricted Tensor Product Operation -- 7 An Abundance of Rational Sphere Maps -- 8 Some Results in Low Codimension -- 9 A Result in Sufficiently High Codimension -- 10 Homotopy and Target-Rank -- 11 Remarks on Degree Bounds -- 12 Inverse Image of a Point -- 13 The General Rational Sphere Map -- 14 A Detailed Rational Example -- 15 An Example in Source Dimension 3 -- 3 Monomial Sphere Maps -- 1 Properties of Monomial Sphere Maps -- 2 Some Remarkable Monomial Sphere Maps -- 3 More on These Remarkable Polynomials -- 4 Cyclic Groups and Monomial Sphere Maps -- 5 Circulant Matrices -- 6 The Pell Equation -- 7 Elaboration of the Method for Producing Sharp Polynomials -- 8 Additional Tricks -- 9 Maps with Source Dimension 2 and Target Dimension 4 -- 10 Target-Ranks for Monomial Sphere Maps -- 4 Monomial Sphere Maps and Linear Programming -- 1 Underdetermined Linear Systems -- 2 An Optimization Problem for Monomial Sphere Maps -- 3 Two Detailed Examples in Source Dimension 2 -- 4 Results of Coding and Consequences in Source Dimension 2 -- 5 Monomial Sphere Maps in Higher Dimension -- 6 Sparseness in Source Dimension 2 -- 7 Sparseness in Source Dimension at Least Three -- 8 The Optimal Polynomials in Degrees 9 and 11 -- 9 Coding -- 5 Groups Associated with Holomorphic Mappings -- 1 Five Groups -- 2 Examples of the Five Groups -- 3 Hermitian-Invariant Groups for Rational Sphere Maps.
4 Additional Examples -- 5 Behavior of Γf Under Various Constructions -- 6 Examples Involving the Symmetric Group -- 7 The Symmetric Group -- 8 Groups Arising from Rational Sphere Maps -- 9 Different Representations -- 10 Additional Results -- 11 A Criterion for Being a Polynomial -- 6 Elementary Complex and CR Geometry -- 1 Subvarieties of the Unit Ball -- 2 The Unbounded Realization of the Unit Sphere -- 3 Geometry of Real Hypersurfaces -- 4 CR Functions and Mappings -- 5 Strong Pseudoconvexity of the Unit Sphere -- 6 Comparison with the Real Case -- 7 Varieties Associated with Rational Sphere Maps -- 8 Examples of Xf -- 9 A Return to the Definition of Rational Sphere Map -- 7 Geometric Properties of Rational Sphere Maps -- 1 Volumes -- 2 A Geometric Result in One Dimension -- 3 An Integral Inequality -- 4 Volume Inequalities for Polynomial and Rational Sphere Maps -- 5 Comparison with a Real Variable Integral Inequality -- 8 List of Open Problems -- Appendix Bibliography -- -- Index. |
| Record Nr. | UNISA-996466408403316 |
D'Angelo John P.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||