Analysis without Borders : Dedicated to Ilya Spitkovsky on Occasion of his 70th Anniversary / / edited by Sergei Rogosin
| Analysis without Borders : Dedicated to Ilya Spitkovsky on Occasion of his 70th Anniversary / / edited by Sergei Rogosin |
| Autore | Rogosin Sergei V |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
| Descrizione fisica | 1 online resource (256 pages) |
| Disciplina | 515.724 |
| Collana | Operator Theory: Advances and Applications |
| Soggetto topico |
Operator theory
Operator Theory Anàlisi matemàtica Equacions integrals Factorització (Matemàtica) Teoria d'operadors |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9783031593970 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | - Ilya Spitkovsky 70 -- Ilya Spitkovsky’s pioneering work on massive local spectra of Toeplitz operators -- The Reciprocal Schur Inequality -- On Iterative Procedure for a Vectorial Wiener-Hopf Problem with Oscillating Terms -- A direct proof of an inversion formula for Bezoutians -- A Numerical Algorithm for Matrix Spectral Factorization on the Real Line -- On topological aspects of numerical range -- On dilations of Fourier multipliers on weighted Lebesgue spaces -- On the Algebras of Wiener-Hopf Operators with Continuous Symbols Acting on Some Banach Function Spaces -- Algebras of Convolution Type Operators with Piecewise Quasicontinuous and Piecewise Slowly Oscillating Data onWeighted Lebesgue Spaces -- On solution to Riemann problem in logarithmic cases -- Operator Projective Line and Its Transformations -- Fredholm Determinants, Continued Fractions, Jost and Evans Functions for a Jacobi Matrix Associated with the 2D-Euler Equations -- Factorization of Partly Rational Matrix-Functions and its Application to the Solution of R-linear Conjugation Problem. |
| Record Nr. | UNINA-9910874679203321 |
Rogosin Sergei V
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Boundary integral equations / / George C. Hsiao, Wolfgang L. Wendland
| Boundary integral equations / / George C. Hsiao, Wolfgang L. Wendland |
| Autore | Hsiao G. C (George C.) |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (xx, 783 pages) : illustrations |
| Disciplina | 620.00151535 |
| Collana | Applied mathematical sciences |
| Soggetto topico |
Boundary element methods
Integral equations Problemes de contorn Equacions integrals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-71127-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Table of Contents -- 1. Introduction -- 1.1 The Green Representation Formula -- 1.2 Boundary Potentials and Calderón's Projector -- 1.3 Boundary Integral Equations -- 1.3.1 The Dirichlet Problem -- 1.3.2 The Neumann Problem -- 1.4 Exterior Problems -- 1.4.1 The Exterior Dirichlet Problem -- 1.4.2 The Exterior Neumann Problem -- 1.5 Remarks -- 2. Boundary Integral Equations -- 2.1 The Helmholtz Equation -- 2.1.1 Low Frequency Behaviour -- 2.2 The Lamé System -- 2.2.1 The Interior Displacement Problem -- 2.2.2 The Interior Traction Problem -- 2.2.3 Some Exterior Fundamental Problems -- 2.2.4 The Incompressible Material -- 2.3 The Stokes Equations -- 2.3.1 Hydrodynamic Potentials -- 2.3.2 The Stokes Boundary Value Problems -- 2.3.3 The Incompressible Material - Revisited -- 2.4 The Biharmonic Equation -- 2.4.1 Calderón's Projector -- 2.4.2 Boundary Value Problems and Boundary Integral Equations -- 2.5 Remarks -- 3. Representation Formulae, Local Coordinates and Direct Boundary Integral Equations -- 3.1 Classical Function Spaces and Distributions -- 3.2 Hadamard's Finite Part Integrals -- 3.3 Local Coordinates -- 3.4 Short Excursion to Elementary Differential Geometry -- 3.4.1 Second Order Differential Operators in Divergence Form -- 3.5 Distributional Derivatives and Abstract Green's Second Formula -- 3.6 The Green Representation Formula -- 3.7 Green's Representation Formulae in Local Coordinates -- 3.8 Multilayer Potentials -- 3.9 Direct Boundary Integral Equations -- 3.9.1 Boundary Value Problems -- 3.9.2 Transmission Problems -- 3.10 Remarks -- 4. Sobolev Spaces -- 4.1 The Spaces Hs(Ω) -- 4.2 The Trace Spaces Hs(Γ) -- 4.2.1 Trace Spaces for Periodic Functions on a Smooth Curve in IR -- 4.2.2 Trace Spaces on Curved Polygons in IR.
4.3 The Trace Spaces on an Open Surface -- 4.4 The Weighted Sobolev Spaces Hm(Ωc -- λ) and Hm(IRn -- λ) -- 4.5 Function Spaces H( div ,Ω) and H( curl,Ω) -- 5. Variational Formulations -- 5.1 Partial Differential Equations of Second Order -- 5.1.1 Interior Problems -- 5.1.2 Exterior Problems -- 5.1.3 Transmission Problems -- 5.2 Abstract Existence Theorems for Variational Problems -- 5.2.1 The Lax-Milgram Theorem -- 5.3 The Fredholm-Nikolski Theorems -- 5.3.1 Fredholm's Alternative -- 5.3.2 The Riesz-Schauder and the Nikolski Theorems -- 5.3.3 Fredholm's Alternative for Sesquilinear Forms -- 5.3.4 Fredholm Operators -- 5.4 Gårding's Inequality for Boundary Value Problems -- 5.4.1 Gårding's Inequality for Second Order Strongly Elliptic Equations in Ω -- 5.4.2 The Stokes System -- 5.4.3 Gårding's Inequality for Exterior Second Order Problems -- 5.4.4 Gårding's Inequality for Second Order Transmission Problems -- 5.5 Existence of Solutions to Strongly Elliptic Boundary Value Problems -- 5.5.1 Interior Boundary Value Problems -- 5.5.2 Exterior Boundary Value Problems -- 5.5.3 Transmission Problems -- 5.6 Solutions of Certain Boundary Integral Equations and Associated Boundary Value Problems -- 5.6.1 The Generalized Representation Formula for Second Order Systems -- 5.6.2 Continuity of Some Boundary Integral Operators -- 5.6.3 Continuity Based on Finite Regions -- 5.6.4 Continuity of Hydrodynamic Potentials -- 5.6.5 The Equivalence Between Boundary Value Problems and Integral Equations -- 5.6.6 Variational Formulation of Direct Boundary Integral Equations -- 5.6.7 Positivity and Contraction of Boundary Integral Operators -- 5.6.8 The Solvability of Direct Boundary Integral Equations -- 5.6.9 Positivity of the Boundary Integral Operators of the Stokes System -- 5.7 Partial Differential Equations of Higher Order -- 5.8 Remarks -- 5.8.1 Assumptions on Γ. 5.8.2 Higher Regularity of Solutions -- 5.8.3 Mixed Boundary Conditions and Crack Problem -- 6. Electromagnetic Fields -- 6.1 Introduction -- 6.2 Maxwell Equations -- 6.3 Constitutive Equations -- 6.4 Time Harmonic Fields -- 6.4.1 Plane waves -- 6.5 Electromagnetic potentials -- 6.6 Transmission and Boundary Conditions -- 6.7 Boundary Value Problems -- 6.7.1 Scattering problems -- 6.7.2 Eddy current problems -- 6.8 Uniqueness -- 6.8.1 The cavity problem -- 6.8.2 Exterior problems -- 6.8.3 The transmission problem -- 6.9 Representation Formulae -- 6.10 Boundary Integral Equations for Electromagnetic fields -- 6.10.1 The Calderon projector and the capacity operators -- 6.10.2 Weak solutions for a fundamental problem -- 6.10.2.1 Interior Dirichlet problem in Ω. -- 6.10.2.2 A reduction to boundary integral equations. -- 6.11 Application of the Electromagnetic Potentials to Eddy Current Problems -- 6.11.1 The '(A, ϕ) − (A) − (ψ)' formulation in the bounded domain -- 6.11.2 The '(A, ϕ) − (ψ)' formulation in an unbounded domain -- 6.11.3 Electric field in the dielectric domain ΩD. -- 6.11.4 Vector potentials - revisited -- 6.12 Applications of boundary integral equations to scattering problems -- 6.12.1 Scattering by a perfect electric conductor, EFIE and MFIE -- 6.12.2 Scattering by a dielectric body -- 6.12.3 Scattering by objects with impedance boundary conditions -- 7. Introduction to Pseudodifferential Operators -- 7.1 Basic Theory of Pseudodifferential Operators -- 7.2 Elliptic Pseudodifferential Operators on Ω ⊂ IRn -- 7.2.1 Systems of Pseudodifferential Operators -- 7.2.2 Parametrix and Fundamental Solution -- 7.2.3 Levi Functions for Scalar Elliptic Equations -- 7.2.4 Levi Functions for Elliptic Systems -- 7.2.5 Strong Ellipticity and Gårding's Inequality -- 7.3 Review on Fundamental Solutions -- 7.3.1 Local Fundamental Solutions. 7.3.2 Fundamental Solutions in IRn for Operators with Constant Coefficients -- 7.3.3 Existing Fundamental Solutions in Applications -- 8. Pseudodifferential Operators as Integral Operators -- 8.1 Pseudohomogeneous Kernels -- 8.1.1 Integral Operators as Pseudodifferential Operators of Negative Order -- 8.1.2 Non-Negative Order Pseudodifferential Operators as Hadamard Finite Part Integral Operators -- 8.1.3 Parity Conditions -- 8.1.4 A Summary of the Relations between Kernels and Symbols -- 8.2 Coordinate Changes and Pseudohomogeneous Kernels -- 8.2.1 The Transformation of General Hadamard Finite Part Integral Operators under Change of Coordinates -- 8.2.2 The Class of Invariant Hadamard Finite Part Integral Operators under Change of Coordinates -- 9. Pseudodifferential and Boundary Integral Operators -- 9.1 Pseudodifferential Operators on Boundary Manifolds -- 9.1.1 Ellipticity on Boundary Manifolds -- 9.1.2 Schwartz Kernels on Boundary Manifolds -- 9.2 Boundary Operators Generated by Domain Pseudodifferential Operators -- 9.3 Surface Potentials on the Plane IRn−1 -- 9.4 Pseudodifferential Operators with Symbols of Rational Type -- 9.5 Surface Potentials on the Boundary Manifold Γ -- 9.6 Volume Potentials -- 9.7 Strong Ellipticity and Fredholm Properties -- 9.8 Strong Ellipticity of Boundary Value Problems and Associated Boundary Integral Equations -- 9.8.1 The Boundary Value and Transmission Problems -- 9.8.2 The Associated Boundary Integral Equations of the First Kind -- 9.8.3 The Transmission Problem and Gårding's inequality -- 9.9 Remarks -- 10. Integral Equations on Γ ⊂ IR3 Recast as Pseudodifferential Equations -- 10.1 Newton Potential Operators for Elliptic Partial Differential Equations and Systems -- 10.1.1 Generalized Newton Potentials for the Helmholtz Equation -- 10.1.2 The Newton Potential for the Lamé System. 10.1.3 The Newton Potential for the Stokes System -- 10.2 Surface Potentials for Second Order Equations -- 10.2.1 Strongly Elliptic Differential Equations -- 10.2.2 Surface Potentials for the Helmholtz Equation -- 10.2.3 Surface Potentials for the Lamé System -- 10.2.4 Surface Potentials for the Stokes System -- 10.3 Invariance of Boundary Pseudodifferential Operators -- 10.3.1 The Hypersingular Boundary Integral Operators for the Helmholtz Equation -- 10.3.2 The Hypersingular Operator for the Lamé System -- 10.3.3 The Hypersingular Operator for the Stokes System -- 10.4 Derivatives of Boundary Potentials -- 10.4.1 Derivatives of the Solution to the Helmholtz Equation -- 10.4.2 Computation of Stress and Strain on the Boundary for the Lamé System -- 10.5 Remarks -- 11. Boundary Integral Equations on Curves in IR2 -- 11.1 Representation of the basic operators for the 2D-Laplacian in terms of Fourier series -- 11.2 The Fourier Series Representation of Periodic Operators A ∈ L m cl(Γ) -- 11.3 Ellipticity Conditions for Periodic Operators on Γ -- 11.3.1 Scalar Equations -- 11.3.2 Systems of Equations -- 11.3.3 Multiply Connected Domains -- 11.4 Fourier Series Representation of some Particular Operators -- 11.4.1 The Helmholtz Equation -- 11.4.2 The Lamé System -- 11.4.3 The Stokes System -- 11.4.4 The Biharmonic Equation -- 11.5 Remarks -- 12. Remarks on Pseudodifferential Operators Related to the Time Harmonic Maxwell Equations -- 12.1 Introduction -- 12.2 Symbols of P and the corresponding Newton potentials -- 12.3 Representation formulae -- 12.4 Symbols of the Electromagnetic Boundary Potentials -- 12.5 Symbols of boundary integral operators -- 12.6 Symbols of the Capacity Operators -- 12.7 Boundary Integral Operators for the Fundamental Boundary Value Problems -- 12.8 Coerciveness and Strong Ellipticity. 12.9 Gårding's inequality for the sesquilinear form A in (6.12.23). |
| Record Nr. | UNISA-996466567503316 |
Hsiao G. C (George C.)
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Geometric multivector analysis : from Grassmann to Dirac / / Andreas Rosén
| Geometric multivector analysis : from Grassmann to Dirac / / Andreas Rosén |
| Autore | Rosen Andreas |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , [2019] |
| Descrizione fisica | 1 online resource (XIII, 465 pages, 29 illustrations., 8 illustrations. in color.) |
| Disciplina | 512.5 |
| Collana | Birkhäuser Advanced Texts Basler Lehrbücher |
| Soggetto topico |
Algebras, Linear
Global analysis (Mathematics) Manifolds (Mathematics) Differential equations Integral equations Geometry, Differential Linear Algebra Global Analysis and Analysis on Manifolds Differential Equations Integral Equations Differential Geometry Anàlisi global (Matemàtica) Àlgebra lineal Geometria diferencial Equacions diferencials Equacions integrals Varietats (Matemàtica) |
| ISBN |
9783030314118
3030314111 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Prelude: Linear algebra -- Exterior algebra -- Clifford algebra -- Mappings of inner product spaces -- Spinors in inner product spaces -- Interlude: Analysis -- Exterior calculus -- Hodge decompositions -- Hypercomplex analysis -- Dirac equations -- Multivector calculus on manifolds -- Two index theorems. |
| Record Nr. | UNINA-9910360852403321 |
Rosen Andreas
|
||
| Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Innovative integrals and their applications I / / Anthony A. Ruffa, Bourama Toni
| Innovative integrals and their applications I / / Anthony A. Ruffa, Bourama Toni |
| Autore | Ruffa Anthony A. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (325 pages) |
| Disciplina | 515.5 |
| Collana | STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health |
| Soggetto topico |
Functions, Special
Integral equations Funcions especials Equacions integrals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-17871-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996499870403316 |
Ruffa Anthony A.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Integral equations and operator theory
| Integral equations and operator theory |
| Pubbl/distr/stampa | Basel, Switzerland, : Birkhäuser Verlag |
| Descrizione fisica | online resource |
| Disciplina | 515.4505 |
| Soggetto topico |
Integral equations
Operator theory Matemàtica Equacions integrals Teoria d'operadors |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 1420-8989 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Integr. equ. oper. theory |
| Record Nr. | UNINA-9910144161403321 |
| Basel, Switzerland, : Birkhäuser Verlag | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical and computational methods for modelling, approximation and simulation / / Domingo Barrera, Sara Remogna and Driss Sbibih, editors
| Mathematical and computational methods for modelling, approximation and simulation / / Domingo Barrera, Sara Remogna and Driss Sbibih, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
| Descrizione fisica | 1 online resource (261 pages) |
| Disciplina | 515.45 |
| Collana | SEMA SIMAI Springer series |
| Soggetto topico |
Numerical analysis
Integral equations Equacions integrals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-94339-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996479370303316 |
| Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Schwarz methods and multilevel preconditioners for boundary element methods / / Ernst Peter Stephan, Thanh Tran
| Schwarz methods and multilevel preconditioners for boundary element methods / / Ernst Peter Stephan, Thanh Tran |
| Autore | Stephan Ernst Peter |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (593 pages) |
| Disciplina | 620.00151535 |
| Soggetto topico |
Boundary element methods - Data processing
Integral equations Equacions integrals |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-79283-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466389003316 |
Stephan Ernst Peter
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Special Integrals / / by Abhishek Mishra
| Special Integrals / / by Abhishek Mishra |
| Autore | Mishra Abhishek |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (288 pages) |
| Disciplina | 515.45 |
| Collana | University Texts in the Mathematical Sciences |
| Soggetto topico |
Integral equations
Mathematical analysis Integral Equations Integral Transforms and Operational Calculus Equacions integrals Anàlisi matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9789819775149
9819775140 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Binomial Series -- Trigonometrical Series -- Special Integrals -- Pseudo-Exponential Functions -- Series Sums using Special Integrals -- Solutions to Binomial Series -- Solutions to Trigonometrical Series. |
| Record Nr. | UNINA-9910988288503321 |
Mishra Abhishek
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||