(In-)stability of differential inclusions : notions, equivalences, and Lyapunov-like characterizations / / Philipp Braun, Lars Grüne, Christopher M. Kellett |
Autore | Braun Philipp |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (123 pages) |
Disciplina | 003.71 |
Collana | SpringerBriefs in Mathematics |
Soggetto topico |
Estabilitat
Equacions diferencials Lyapunov stability Differential equations |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-76317-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910492152103321 |
Braun Philipp
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
(In-)stability of differential inclusions : notions, equivalences, and Lyapunov-like characterizations / / Philipp Braun, Lars Grüne, Christopher M. Kellett |
Autore | Braun Philipp |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (123 pages) |
Disciplina | 003.71 |
Collana | SpringerBriefs in Mathematics |
Soggetto topico |
Estabilitat
Equacions diferencials Lyapunov stability Differential equations |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-76317-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466391503316 |
Braun Philipp
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applying Power Series to Differential Equations [[electronic resource] ] : An Exploration through Questions and Projects / / by James Sochacki, Anthony Tongen |
Autore | Sochacki James |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (XII, 217 p. 45 illus., 36 illus. in color.) |
Disciplina | 515.35 |
Collana | Problem Books in Mathematics |
Soggetto topico |
Differential equations
Sequences (Mathematics) Dynamics Nonlinear theories Algebraic fields Polynomials Differential Equations Sequences, Series, Summability Applied Dynamical Systems Field Theory and Polynomials Equacions diferencials Successions (Matemàtica) Dinàmica Teories no lineals |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-24587-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Introduction: The Linear ODE: x′ = bx + c -- Chapter 2. Egg 1: The Quadratic ODE: x′ = ax2 + bx + c -- Chapter 3. Egg 2: The First Order Exponent ODE: x′ = xr -- Chapter 4. Egg 3: The First Order Sine ODE: x′ = sin x -- Chapter 5. Egg 4: The Second Order Exponent ODE: x′′ = −xr -- Chapter 6. Egg 5: The Second Order Sine ODE - The Single Pendulum -- Chapter 7. Egg 6: Newton’s Method and the Steepest Descent Method -- Chapter 8. Egg 7: Determining Power Series for Functions through ODEs -- Chapter 9. Egg 8: The Periodic Planar ODE: x′ = −y + ax2 + bxy + cy2 ; y′ = x + dx2 + exy + fy2 -- Chapter 10. Egg 9: The Complex Planar Quadratic ODE: z′ = az2 + bz + c -- Chapter 11. Egg 10: Newton’s N-Body Problem -- Chapter 12. Egg 11: ODEs and Conservation Laws -- Chapter 13. Egg 12: Delay Differential Equations -- Chapter 14. An Overview of Our Dozen ODEs -- Chapter 15. Appendix 1. A Review of Maclaurin Polynomials and Power Series -- Chapter 16. Appendix 2. The Dog Rabbit Chasing Problem -- Chapter 17. Appendix 3. A PDE Example: Burgers’ Equation -- References. |
Record Nr. | UNISA-996518463403316 |
Sochacki James
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applying Power Series to Differential Equations [[electronic resource] ] : An Exploration through Questions and Projects / / by James Sochacki, Anthony Tongen |
Autore | Sochacki James |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (XII, 217 p. 45 illus., 36 illus. in color.) |
Disciplina | 515.35 |
Collana | Problem Books in Mathematics |
Soggetto topico |
Differential equations
Sequences (Mathematics) Dynamics Nonlinear theories Algebraic fields Polynomials Differential Equations Sequences, Series, Summability Applied Dynamical Systems Field Theory and Polynomials Equacions diferencials Successions (Matemàtica) Dinàmica Teories no lineals |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-24587-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Introduction: The Linear ODE: x′ = bx + c -- Chapter 2. Egg 1: The Quadratic ODE: x′ = ax2 + bx + c -- Chapter 3. Egg 2: The First Order Exponent ODE: x′ = xr -- Chapter 4. Egg 3: The First Order Sine ODE: x′ = sin x -- Chapter 5. Egg 4: The Second Order Exponent ODE: x′′ = −xr -- Chapter 6. Egg 5: The Second Order Sine ODE - The Single Pendulum -- Chapter 7. Egg 6: Newton’s Method and the Steepest Descent Method -- Chapter 8. Egg 7: Determining Power Series for Functions through ODEs -- Chapter 9. Egg 8: The Periodic Planar ODE: x′ = −y + ax2 + bxy + cy2 ; y′ = x + dx2 + exy + fy2 -- Chapter 10. Egg 9: The Complex Planar Quadratic ODE: z′ = az2 + bz + c -- Chapter 11. Egg 10: Newton’s N-Body Problem -- Chapter 12. Egg 11: ODEs and Conservation Laws -- Chapter 13. Egg 12: Delay Differential Equations -- Chapter 14. An Overview of Our Dozen ODEs -- Chapter 15. Appendix 1. A Review of Maclaurin Polynomials and Power Series -- Chapter 16. Appendix 2. The Dog Rabbit Chasing Problem -- Chapter 17. Appendix 3. A PDE Example: Burgers’ Equation -- References. |
Record Nr. | UNINA-9910682548903321 |
Sochacki James
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Calculus and linear algebra in recipes : terms, phrases and numerous examples in short learning units / / Christian Karpfinger |
Autore | Karpfinger Christian |
Pubbl/distr/stampa | Berlin, Germany : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (1015 pages) |
Disciplina | 512.5 |
Soggetto topico |
Algebras, Linear
Calculus Differential equations Àlgebra lineal Càlcul Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783662654583
9783662654576 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Speech, Symbols and Sets -- 1.1 Speech Patterns and Symbols in Mathematics -- 1.1.1 Junctors -- 1.1.2 Quantifiers -- 1.2 Summation and Product Symbol -- 1.3 Powers and Roots -- 1.4 Symbols of Set Theory -- 1.5 Exercises -- 2 The Natural Numbers, Integers and Rational Numbers -- 2.1 The Natural Numbers -- 2.2 The Integers -- 2.3 The Rational Numbers -- 2.4 Exercises -- 3 The Real Numbers -- 3.1 Basics -- 3.2 Real Intervals -- 3.3 The Absolute Value of a Real Number -- 3.4 n-th Roots -- 3.5 Solving Equations and Inequalities -- 3.6 Maximum, Minimum, Supremum and Infimum -- 3.7 Exercises -- 4 Machine Numbers -- 4.1 b-adic Representation of Real Numbers -- 4.2 Floating Point Numbers -- 4.2.1 Machine Numbers -- 4.2.2 Machine Epsilon, Rounding and Floating Point Arithmetic -- 4.2.3 Loss of Significance -- 4.3 Exercises -- 5 Polynomials -- 5.1 Polynomials: Multiplication and Division -- 5.2 Factorization of Polynomials -- 5.3 Evaluating Polynomials -- 5.4 Partial Fraction Decomposition -- 5.5 Exercises -- 6 Trigonometric Functions -- 6.1 Sine and Cosine -- 6.2 Tangent and Cotangent -- 6.3 The Inverse Functions of the Trigonometric Functions -- 6.4 Exercises -- 7 Complex Numbers: Cartesian Coordinates -- 7.1 Construction of C -- 7.2 The Imaginary Unit and Other Terms -- 7.3 The Fundamental Theorem of Algebra -- 7.4 Exercises -- 8 Complex Numbers: Polar Coordinates -- 8.1 The Polar Representation -- 8.2 Applications of the Polar Representation -- 8.3 Exercises -- 9 Linear Systems of Equations -- 9.1 The Gaussian Elimination Method -- 9.2 The Rank of a Matrix -- 9.3 Homogeneous Linear Systems of Equations -- 9.4 Exercises -- 10 Calculating with Matrices -- 10.1 Definition of Matrices and Some Special Matrices.
10.2 Arithmetic Operations -- 10.3 Inverting Matrices -- 10.4 Calculation Rules -- 10.5 Exercises -- 11 LR-Decomposition of a Matrix -- 11.1 Motivation -- 11.2 The LR-Decomposition: Simplified Variant -- 11.3 The LR-Decomposition: General Variant -- 11.4 The LR-Decomposition-with Column Pivot Search -- 11.5 Exercises -- 12 The Determinant -- 12.1 Definition of the Determinant -- 12.2 Calculation of the Determinant -- 12.3 Applications of the Determinant -- 12.4 Exercises -- 13 Vector Spaces -- 13.1 Definition and Important Examples -- 13.2 Subspaces -- 13.3 Exercises -- 14 Generating Systems and Linear (In)Dependence -- 14.1 Linear Combinations -- 14.2 The Span of X -- 14.3 Linear (In)Dependence -- 14.4 Exercises -- 15 Bases of Vector Spaces -- 15.1 Bases -- 15.2 Applications to Matrices and Systems of Linear Equations -- 15.3 Exercises -- 16 Orthogonality I -- 16.1 Scalar Products -- 16.2 Length, Distance, Angle and Orthogonality -- 16.3 Orthonormal Bases -- 16.4 Orthogonal Decomposition and Linear Combination with Respect to an ONB -- 16.5 Orthogonal Matrices -- 16.6 Exercises -- 17 Orthogonality II -- 17.1 The Orthonormalization Method of Gram and Schmidt -- 17.2 The Vector Product and the (Scalar) Triple Product -- 17.3 The Orthogonal Projection -- 17.4 Exercises -- 18 The Linear Equalization Problem -- 18.1 The Linear Equalization Problem and Its Solution -- 18.2 The Orthogonal Projection -- 18.3 Solution of an Over-Determined Linear System of Equations -- 18.4 The Method of Least Squares -- 18.5 Exercises -- 19 The QR-Decomposition of a Matrix -- 19.1 Full and Reduced QR-Decomposition -- 19.2 Construction of the QR-Decomposition -- 19.3 Applications of the QR-Decomposition -- 19.3.1 Solving a System of Linear Equations -- 19.3.2 Solving the Linear Equalization Problem -- 19.4 Exercises -- 20 Sequences -- 20.1 Terms. 20.2 Convergence and Divergence of Sequences -- 20.3 Exercises -- 21 Calculation of Limits of Sequences -- 21.1 Determining Limits of Explicit Sequences -- 21.2 Determining Limits of Recursive Sequences -- 21.3 Exercises -- 22 Series -- 22.1 Definition and Examples -- 22.2 Convergence Criteria -- 22.3 Exercises -- 23 Mappings -- 23.1 Terms and Examples -- 23.2 Composition, Injective, Surjective, Bijective -- 23.3 The Inverse Mapping -- 23.4 Bounded and Monotone Functions -- 23.5 Exercises -- 24 Power Series -- 24.1 The Domain of Convergence of Real Power Series -- 24.2 The Domain of Convergence of Complex Power Series -- 24.3 The Exponential and the Logarithmic Function -- 24.4 The Hyperbolic Functions -- 24.5 Exercises -- 25 Limits and Continuity -- 25.1 Limits of Functions -- 25.2 Asymptotes of Functions -- 25.3 Continuity -- 25.4 Important Theorems about Continuous Functions -- 25.5 The Bisection Method -- 25.6 Exercises -- 26 Differentiation -- 26.1 The Derivative and the Derivative Function -- 26.2 Derivation Rules -- 26.3 Numerical Differentiation -- 26.4 Exercises -- 27 Applications of Differential Calculus I -- 27.1 Monotonicity -- 27.2 Local and Global Extrema -- 27.3 Determination of Extrema and Extremal Points -- 27.4 Convexity -- 27.5 The Rule of L'Hospital -- 27.6 Exercises -- 28 Applications of Differential Calculus II -- 28.1 The Newton Method -- 28.2 Taylor Expansion -- 28.3 Remainder Estimates -- 28.4 Determination of Taylor Series -- 28.5 Exercises -- 29 Polynomial and Spline Interpolation -- 29.1 Polynomial Interpolation -- 29.2 Construction of Cubic Splines -- 29.3 Exercises -- 30 Integration I -- 30.1 The Definite Integral -- 30.2 The Indefinite Integral -- 30.3 Exercises -- 31 Integration II -- 31.1 Integration of Rational Functions -- 31.2 Rational Functions in Sine and Cosine -- 31.3 Numerical Integration. 31.4 Volumes and Surfaces of Solids of Revolution -- 31.5 Exercises -- 32 Improper Integrals -- 32.1 Calculation of Improper Integrals -- 32.2 The Comparison Test for Improper Integrals -- 32.3 Exercises -- 33 Separable and Linear Differential Equations of First Order -- 33.1 First Differential Equations -- 33.2 Separable Differential Equations -- 33.2.1 The Procedure for Solving a Separable Differential Equation -- 33.2.2 Initial Value Problems -- 33.3 The Linear Differential Equation of First Order -- 33.4 Exercises -- 34 Linear Differential Equations with Constant Coefficients -- 34.1 Homogeneous Linear Differential Equations with Constant Coefficients -- 34.2 Inhomogeneous Linear Differential Equations with Constant Coefficients -- 34.2.1 Variation of Parameters -- 34.2.2 Approach of the Right-Hand Side Type -- 34.3 Exercises -- 35 Some Special Types of Differential Equations -- 35.1 The Homogeneous Differential Equation -- 35.2 The Euler Differential Equation -- 35.3 Bernoulli's Differential Equation -- 35.4 The Riccati Differential Equation -- 35.5 The Power Series Approach -- 35.6 Exercises -- 36 Numerics of Ordinary Differential Equations I -- 36.1 First Procedure -- 36.2 Runge-Kutta Method -- 36.3 Multistep Methods -- 36.4 Exercises -- 37 Linear Mappings and Transformation Matrices -- 37.1 Definitions and Examples -- 37.2 Image, Kernel and the Dimensional Formula -- 37.3 Coordinate Vectors -- 37.4 Transformation Matrices -- 37.5 Exercises -- 38 Base Transformation -- 38.1 The Tansformation Matrix of the Composition of Linear Mappings -- 38.2 Base Transformation -- 38.3 The Two Methods for Determining Transformation Matrices -- 38.4 Exercises -- 39 Diagonalization: Eigenvalues and Eigenvectors -- 39.1 Eigenvalues and Eigenvectors of Matrices -- 39.2 Diagonalizing Matrices -- 39.3 The Characteristic Polynomial of a Matrix. 39.4 Diagonalization of Real Symmetric Matrices -- 39.5 Exercises -- 40 Numerical Calculation of Eigenvalues and Eigenvectors -- 40.1 Gerschgorin Circles -- 40.2 Vector Iteration -- 40.3 The Jacobian Method -- 40.4 The QR-Method -- 40.5 Exercises -- 41 Quadrics -- 41.1 Terms and First Examples -- 41.2 Transformation to Normal Form -- 41.3 Exercises -- 42 Schur Decomposition and Singular Value Decomposition -- 42.1 The Schur Decomposition -- 42.2 Calculation of the Schur Decomposition -- 42.3 Singular Value Decomposition -- 42.4 Determination of the Singular Value Decomposition -- 42.5 Exercises -- 43 The Jordan Normal Form I -- 43.1 Existence of the Jordan Normal Form -- 43.2 Generalized Eigenspaces -- 43.3 Exercises -- 44 The Jordan Normal Form II -- 44.1 Construction of a Jordan Base -- 44.2 Number and Size of Jordan Boxes -- 44.3 Exercises -- 45 Definiteness and Matrix Norms -- 45.1 Definiteness of Matrices -- 45.2 Matrix Norms -- 45.2.1 Norms -- 45.2.2 Induced Matrix Norm -- 45.3 Exercises -- 46 Functions of Several Variables -- 46.1 The Functions and Their Representations -- 46.2 Some Topological Terms -- 46.3 Consequences, Limits, Continuity -- 46.4 Exercises -- 47 Partial Differentiation: Gradient, Hessian Matrix, Jacobian Matrix -- 47.1 The Gradient -- 47.2 The Hessian Matrix -- 47.3 The Jacobian Matrix -- 47.4 Exercises -- 48 Applications of Partial Derivatives -- 48.1 The (Multidimensional) Newton Method -- 48.2 Taylor Development -- 48.2.1 The Zeroth, First and Second Taylor Polynomial -- 48.2.2 The General Taylor polynomial -- 48.3 Exercises -- 49 Extreme Value Determination -- 49.1 Local and Global Extrema -- 49.2 Determination of Extrema and Extremal Points -- 49.3 Exercises -- 50 Extreme Value Determination Under Constraints -- 50.1 Extrema Under Constraints -- 50.2 The Substitution Method -- 50.3 The Method of Lagrange Multipliers. 50.4 Extrema Under Multiple Constraints. |
Record Nr. | UNINA-9910629289203321 |
Karpfinger Christian
![]() |
||
Berlin, Germany : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Calculus and linear algebra in recipes : terms, phrases and numerous examples in short learning units / / Christian Karpfinger |
Autore | Karpfinger Christian |
Pubbl/distr/stampa | Berlin, Germany : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (1015 pages) |
Disciplina | 512.5 |
Soggetto topico |
Algebras, Linear
Calculus Differential equations Àlgebra lineal Càlcul Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783662654583
9783662654576 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- 1 Speech, Symbols and Sets -- 1.1 Speech Patterns and Symbols in Mathematics -- 1.1.1 Junctors -- 1.1.2 Quantifiers -- 1.2 Summation and Product Symbol -- 1.3 Powers and Roots -- 1.4 Symbols of Set Theory -- 1.5 Exercises -- 2 The Natural Numbers, Integers and Rational Numbers -- 2.1 The Natural Numbers -- 2.2 The Integers -- 2.3 The Rational Numbers -- 2.4 Exercises -- 3 The Real Numbers -- 3.1 Basics -- 3.2 Real Intervals -- 3.3 The Absolute Value of a Real Number -- 3.4 n-th Roots -- 3.5 Solving Equations and Inequalities -- 3.6 Maximum, Minimum, Supremum and Infimum -- 3.7 Exercises -- 4 Machine Numbers -- 4.1 b-adic Representation of Real Numbers -- 4.2 Floating Point Numbers -- 4.2.1 Machine Numbers -- 4.2.2 Machine Epsilon, Rounding and Floating Point Arithmetic -- 4.2.3 Loss of Significance -- 4.3 Exercises -- 5 Polynomials -- 5.1 Polynomials: Multiplication and Division -- 5.2 Factorization of Polynomials -- 5.3 Evaluating Polynomials -- 5.4 Partial Fraction Decomposition -- 5.5 Exercises -- 6 Trigonometric Functions -- 6.1 Sine and Cosine -- 6.2 Tangent and Cotangent -- 6.3 The Inverse Functions of the Trigonometric Functions -- 6.4 Exercises -- 7 Complex Numbers: Cartesian Coordinates -- 7.1 Construction of C -- 7.2 The Imaginary Unit and Other Terms -- 7.3 The Fundamental Theorem of Algebra -- 7.4 Exercises -- 8 Complex Numbers: Polar Coordinates -- 8.1 The Polar Representation -- 8.2 Applications of the Polar Representation -- 8.3 Exercises -- 9 Linear Systems of Equations -- 9.1 The Gaussian Elimination Method -- 9.2 The Rank of a Matrix -- 9.3 Homogeneous Linear Systems of Equations -- 9.4 Exercises -- 10 Calculating with Matrices -- 10.1 Definition of Matrices and Some Special Matrices.
10.2 Arithmetic Operations -- 10.3 Inverting Matrices -- 10.4 Calculation Rules -- 10.5 Exercises -- 11 LR-Decomposition of a Matrix -- 11.1 Motivation -- 11.2 The LR-Decomposition: Simplified Variant -- 11.3 The LR-Decomposition: General Variant -- 11.4 The LR-Decomposition-with Column Pivot Search -- 11.5 Exercises -- 12 The Determinant -- 12.1 Definition of the Determinant -- 12.2 Calculation of the Determinant -- 12.3 Applications of the Determinant -- 12.4 Exercises -- 13 Vector Spaces -- 13.1 Definition and Important Examples -- 13.2 Subspaces -- 13.3 Exercises -- 14 Generating Systems and Linear (In)Dependence -- 14.1 Linear Combinations -- 14.2 The Span of X -- 14.3 Linear (In)Dependence -- 14.4 Exercises -- 15 Bases of Vector Spaces -- 15.1 Bases -- 15.2 Applications to Matrices and Systems of Linear Equations -- 15.3 Exercises -- 16 Orthogonality I -- 16.1 Scalar Products -- 16.2 Length, Distance, Angle and Orthogonality -- 16.3 Orthonormal Bases -- 16.4 Orthogonal Decomposition and Linear Combination with Respect to an ONB -- 16.5 Orthogonal Matrices -- 16.6 Exercises -- 17 Orthogonality II -- 17.1 The Orthonormalization Method of Gram and Schmidt -- 17.2 The Vector Product and the (Scalar) Triple Product -- 17.3 The Orthogonal Projection -- 17.4 Exercises -- 18 The Linear Equalization Problem -- 18.1 The Linear Equalization Problem and Its Solution -- 18.2 The Orthogonal Projection -- 18.3 Solution of an Over-Determined Linear System of Equations -- 18.4 The Method of Least Squares -- 18.5 Exercises -- 19 The QR-Decomposition of a Matrix -- 19.1 Full and Reduced QR-Decomposition -- 19.2 Construction of the QR-Decomposition -- 19.3 Applications of the QR-Decomposition -- 19.3.1 Solving a System of Linear Equations -- 19.3.2 Solving the Linear Equalization Problem -- 19.4 Exercises -- 20 Sequences -- 20.1 Terms. 20.2 Convergence and Divergence of Sequences -- 20.3 Exercises -- 21 Calculation of Limits of Sequences -- 21.1 Determining Limits of Explicit Sequences -- 21.2 Determining Limits of Recursive Sequences -- 21.3 Exercises -- 22 Series -- 22.1 Definition and Examples -- 22.2 Convergence Criteria -- 22.3 Exercises -- 23 Mappings -- 23.1 Terms and Examples -- 23.2 Composition, Injective, Surjective, Bijective -- 23.3 The Inverse Mapping -- 23.4 Bounded and Monotone Functions -- 23.5 Exercises -- 24 Power Series -- 24.1 The Domain of Convergence of Real Power Series -- 24.2 The Domain of Convergence of Complex Power Series -- 24.3 The Exponential and the Logarithmic Function -- 24.4 The Hyperbolic Functions -- 24.5 Exercises -- 25 Limits and Continuity -- 25.1 Limits of Functions -- 25.2 Asymptotes of Functions -- 25.3 Continuity -- 25.4 Important Theorems about Continuous Functions -- 25.5 The Bisection Method -- 25.6 Exercises -- 26 Differentiation -- 26.1 The Derivative and the Derivative Function -- 26.2 Derivation Rules -- 26.3 Numerical Differentiation -- 26.4 Exercises -- 27 Applications of Differential Calculus I -- 27.1 Monotonicity -- 27.2 Local and Global Extrema -- 27.3 Determination of Extrema and Extremal Points -- 27.4 Convexity -- 27.5 The Rule of L'Hospital -- 27.6 Exercises -- 28 Applications of Differential Calculus II -- 28.1 The Newton Method -- 28.2 Taylor Expansion -- 28.3 Remainder Estimates -- 28.4 Determination of Taylor Series -- 28.5 Exercises -- 29 Polynomial and Spline Interpolation -- 29.1 Polynomial Interpolation -- 29.2 Construction of Cubic Splines -- 29.3 Exercises -- 30 Integration I -- 30.1 The Definite Integral -- 30.2 The Indefinite Integral -- 30.3 Exercises -- 31 Integration II -- 31.1 Integration of Rational Functions -- 31.2 Rational Functions in Sine and Cosine -- 31.3 Numerical Integration. 31.4 Volumes and Surfaces of Solids of Revolution -- 31.5 Exercises -- 32 Improper Integrals -- 32.1 Calculation of Improper Integrals -- 32.2 The Comparison Test for Improper Integrals -- 32.3 Exercises -- 33 Separable and Linear Differential Equations of First Order -- 33.1 First Differential Equations -- 33.2 Separable Differential Equations -- 33.2.1 The Procedure for Solving a Separable Differential Equation -- 33.2.2 Initial Value Problems -- 33.3 The Linear Differential Equation of First Order -- 33.4 Exercises -- 34 Linear Differential Equations with Constant Coefficients -- 34.1 Homogeneous Linear Differential Equations with Constant Coefficients -- 34.2 Inhomogeneous Linear Differential Equations with Constant Coefficients -- 34.2.1 Variation of Parameters -- 34.2.2 Approach of the Right-Hand Side Type -- 34.3 Exercises -- 35 Some Special Types of Differential Equations -- 35.1 The Homogeneous Differential Equation -- 35.2 The Euler Differential Equation -- 35.3 Bernoulli's Differential Equation -- 35.4 The Riccati Differential Equation -- 35.5 The Power Series Approach -- 35.6 Exercises -- 36 Numerics of Ordinary Differential Equations I -- 36.1 First Procedure -- 36.2 Runge-Kutta Method -- 36.3 Multistep Methods -- 36.4 Exercises -- 37 Linear Mappings and Transformation Matrices -- 37.1 Definitions and Examples -- 37.2 Image, Kernel and the Dimensional Formula -- 37.3 Coordinate Vectors -- 37.4 Transformation Matrices -- 37.5 Exercises -- 38 Base Transformation -- 38.1 The Tansformation Matrix of the Composition of Linear Mappings -- 38.2 Base Transformation -- 38.3 The Two Methods for Determining Transformation Matrices -- 38.4 Exercises -- 39 Diagonalization: Eigenvalues and Eigenvectors -- 39.1 Eigenvalues and Eigenvectors of Matrices -- 39.2 Diagonalizing Matrices -- 39.3 The Characteristic Polynomial of a Matrix. 39.4 Diagonalization of Real Symmetric Matrices -- 39.5 Exercises -- 40 Numerical Calculation of Eigenvalues and Eigenvectors -- 40.1 Gerschgorin Circles -- 40.2 Vector Iteration -- 40.3 The Jacobian Method -- 40.4 The QR-Method -- 40.5 Exercises -- 41 Quadrics -- 41.1 Terms and First Examples -- 41.2 Transformation to Normal Form -- 41.3 Exercises -- 42 Schur Decomposition and Singular Value Decomposition -- 42.1 The Schur Decomposition -- 42.2 Calculation of the Schur Decomposition -- 42.3 Singular Value Decomposition -- 42.4 Determination of the Singular Value Decomposition -- 42.5 Exercises -- 43 The Jordan Normal Form I -- 43.1 Existence of the Jordan Normal Form -- 43.2 Generalized Eigenspaces -- 43.3 Exercises -- 44 The Jordan Normal Form II -- 44.1 Construction of a Jordan Base -- 44.2 Number and Size of Jordan Boxes -- 44.3 Exercises -- 45 Definiteness and Matrix Norms -- 45.1 Definiteness of Matrices -- 45.2 Matrix Norms -- 45.2.1 Norms -- 45.2.2 Induced Matrix Norm -- 45.3 Exercises -- 46 Functions of Several Variables -- 46.1 The Functions and Their Representations -- 46.2 Some Topological Terms -- 46.3 Consequences, Limits, Continuity -- 46.4 Exercises -- 47 Partial Differentiation: Gradient, Hessian Matrix, Jacobian Matrix -- 47.1 The Gradient -- 47.2 The Hessian Matrix -- 47.3 The Jacobian Matrix -- 47.4 Exercises -- 48 Applications of Partial Derivatives -- 48.1 The (Multidimensional) Newton Method -- 48.2 Taylor Development -- 48.2.1 The Zeroth, First and Second Taylor Polynomial -- 48.2.2 The General Taylor polynomial -- 48.3 Exercises -- 49 Extreme Value Determination -- 49.1 Local and Global Extrema -- 49.2 Determination of Extrema and Extremal Points -- 49.3 Exercises -- 50 Extreme Value Determination Under Constraints -- 50.1 Extrema Under Constraints -- 50.2 The Substitution Method -- 50.3 The Method of Lagrange Multipliers. 50.4 Extrema Under Multiple Constraints. |
Record Nr. | UNISA-996499871503316 |
Karpfinger Christian
![]() |
||
Berlin, Germany : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Change and variations : a history of differential equations to 1900 / / Jeremy Gray |
Autore | Gray Jeremy <1947-> |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XXII, 419 p. 44 illus., 13 illus. in color.) |
Disciplina | 515.35 |
Collana | Springer undergraduate mathematics series |
Soggetto topico |
Differential equations
Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
3-030-70575-7
9783030705749 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 The First Ordinary Differential Equations -- 2 Variational Problems and the Calculus -- 3 The Partial Differential Calculus -- 4 Rational Mechanics -- 5 Partial Differential Equations -- 6 Lagrange's General Theory -- 7 The Calculus of Variations -- 8 Monge and Solutions to Partial Differential Equations -- 9 Revision -- 10 The Heat Equation -- 11 Gauss and the Hypergeometric Equation -- 12 Existence Theorem -- 13 Riemann and Complex Function Theory -- 14 Riemann and the Hypergeometric Equation -- 15 Schwarz and the Complex Hypergeometric Equation -- 16 Complex Ordinary Differential Equations: Poincaré -- 17 More General Partial Differential Equations -- 18 Green's Functions and Dirichlet's Principle -- 19 Attempts on Laplace's Equation -- 20 Applied Wave Equations -- 21 Revision -- 22 Riemann's Shock Wave Paper -- 23 The Example of Minimal Surfaces -- 24 Partial Differential Equations and Mechanics -- 25 Geometrical Interpretations of Mechanics -- 26 The Calculus of Variations in the 19th Century -- 27 Poincaré and Mathematical Physics -- 28 Elliptic Equations and Regular Variational Problems -- 29 Hyperbolic Equations -- 30 Revision -- 32 Translations -- A Newton's Principia Mathematica -- B Characteristics -- C First-order Non-linear Equations -- D Green's Theorem and Heat Conduction -- E Complex Analysis -- F Möbius Transformations -- G Lipschitz and Picard -- H The Assessment -- Bibliography -- Index. |
Record Nr. | UNISA-996466408103316 |
Gray Jeremy <1947->
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Change and variations : a history of differential equations to 1900 / / Jeremy Gray |
Autore | Gray Jeremy <1947-> |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XXII, 419 p. 44 illus., 13 illus. in color.) |
Disciplina | 515.35 |
Collana | Springer undergraduate mathematics series |
Soggetto topico |
Differential equations
Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
3-030-70575-7
9783030705749 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 The First Ordinary Differential Equations -- 2 Variational Problems and the Calculus -- 3 The Partial Differential Calculus -- 4 Rational Mechanics -- 5 Partial Differential Equations -- 6 Lagrange's General Theory -- 7 The Calculus of Variations -- 8 Monge and Solutions to Partial Differential Equations -- 9 Revision -- 10 The Heat Equation -- 11 Gauss and the Hypergeometric Equation -- 12 Existence Theorem -- 13 Riemann and Complex Function Theory -- 14 Riemann and the Hypergeometric Equation -- 15 Schwarz and the Complex Hypergeometric Equation -- 16 Complex Ordinary Differential Equations: Poincaré -- 17 More General Partial Differential Equations -- 18 Green's Functions and Dirichlet's Principle -- 19 Attempts on Laplace's Equation -- 20 Applied Wave Equations -- 21 Revision -- 22 Riemann's Shock Wave Paper -- 23 The Example of Minimal Surfaces -- 24 Partial Differential Equations and Mechanics -- 25 Geometrical Interpretations of Mechanics -- 26 The Calculus of Variations in the 19th Century -- 27 Poincaré and Mathematical Physics -- 28 Elliptic Equations and Regular Variational Problems -- 29 Hyperbolic Equations -- 30 Revision -- 32 Translations -- A Newton's Principia Mathematica -- B Characteristics -- C First-order Non-linear Equations -- D Green's Theorem and Heat Conduction -- E Complex Analysis -- F Möbius Transformations -- G Lipschitz and Picard -- H The Assessment -- Bibliography -- Index. |
Record Nr. | UNINA-9910484121003321 |
Gray Jeremy <1947->
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Collected papers in honor Yoshihiro Shibata / / Tohru Ozawa, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2023] |
Descrizione fisica | 1 online resource (396 pages) |
Disciplina | 531 |
Soggetto topico |
Continuum mechanics
Differential equations Mecànica dels medis continus Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783031192524
9783031192517 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Preface -- References -- Global Wellposedness of the Primitive Equations with Nonlinear Equation of State in Critical Spaces -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Typical Ocean Densities -- 3.1. Linear Density -- 3.2. Equation of State by TEOS-10 -- 3.3. Equation of State by McDongall-Jacket-Wright-Feistel -- 3.4. Equation of State by UNESCO-80 -- 4. Main Result -- 5. Estimates for the Local Existence -- 6. A Priori Estimates -- 7. Proof of Theorem 4.1 -- 7.1. Local Wellposedness -- 7.2. Global Wellposedness -- Appendix A. Semilinear Evolution Equations and Maximal Lr-Regularity -- References -- On the Global Existence for the Compressible Euler-Riesz System -- Abstract -- Introduction -- 1. Main Results -- 2. A Local in Time Result for Non-decaying Data -- 2.1. A Priori Estimates -- 2.2. About the Proof of Existence -- 2.3. Uniqueness -- 3. A Global Existence Result -- 3.1. A Priori Estimates -- 3.2. Existence -- 3.3. The Proof of Uniqueness -- 3.4. Instability of Nontrivial Static Solutions in the Attractive Case -- 4. About Ideal Gases -- 4.1. Local Existence -- 4.2. Global Existence -- 4.3. Remark on Static Solutions -- Appendix -- Acknowledgements -- References -- Rotation Problem for a Two-Phase Drop -- Abstract -- 1. Introduction -- 2. Linear Problem -- 3. The Nonlinear Problem -- References -- On the Stokes-Type Resolvent Problem Associated with Time-Periodic Flow Around a Rotating Obstacle -- Abstract -- 1. Introduction -- 2. Notation -- 3. Main Results -- 4. The Resolvent Problem in the Whole Space -- 5. The Resolvent Problem in an Exterior Domain -- 6. The Time-Periodic Problem -- References -- Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit -- Abstract -- 1. Introduction -- 2. Preliminary Material -- 2.1. Mathematical Theory of the Closed System.
2.2. Transport Coefficients -- 2.3. Equation of State -- 2.4. Relative Energy -- 3. Main Results -- 3.1. Unconditional Convergence in the Absence of Boundary Layer -- 3.2. Conditional Result: Viscous Boundary Layer -- 4. Consistency of the Vanishing Dissipation/Radiation Approximation -- 4.1. Temperature for the Euler System -- 4.2. Consistency -- 4.2.1. Viscous Stress Consistency -- 4.2.2. Heat Flux Consistency -- 4.2.3. Radiation Entropy Convective Flux Consistency -- 5. Convergence -- 5.1. Velocity Regularization -- 5.2. Application of the Relative Energy Inequality -- 5.3. Integrals Controlled by the Consistency Estimates -- 5.4. Integrals Independent of the Boundary Layer -- 5.5. Boundary Layer -- 5.5.1. Viscous Stress -- 5.5.2. Convective Term -- 5.6. Strong Convergence -- References -- On the Hydrostatic Approximation of Compressible Anisotropic Navier-Stokes Equations-Rigorous Justification -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Main Result -- 3.1. Dissipative Weak Solutions of CNS -- 3.2. Strong Solution of CPE -- 3.3. Versatile Relative Entropy Inequality -- 3.4. Main Result -- 4. Convergence -- 4.1. Main Idea of Proof -- 4.2. Step 1 -- 4.3. Step 2 -- 4.4. Step 3 -- Acknowledgements -- References -- A Route to Chaos in Rayleigh-Bénard Heat Convection -- Abstract -- 1. Introduction -- 2. linear Stability and Critical Rayleigh Number -- 3. Routes to Chaos -- 3.1. Roll Solutions on Bifurcation Branches in the Large -- 3.2. Time Evolution of Roll Solutions and the Secondary Hopf Bifurcation -- 3.3. Concluding Remark -- Acknowledgements -- References -- Existence of Weak Solution to the Nonstationary Navier-Stokes Equations Approximated by Pressure Stabilization Method -- Abstract -- 1. Introduction -- 2. Notations and Main Results -- 3. Preliminaries -- 4. Proof of Main Results -- Acknowledgements -- References. Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application -- Abstract -- 1. Introduction -- 2. Notation and Main Results -- 2.1. Notation -- 2.2. Main Results -- 3. Preliminaries -- 3.1. Some Inequalities -- 3.2. Compact Embeddings -- 3.3. Results of the Large Resolvent Parameter -- 3.4. Maximal Regularity -- 4. The Problem in Bounded Domains -- 4.1. Existence of Solutions -- 4.2. Uniqueness of Solutions -- 4.3. A Priori Estimates -- 4.4. Proof of Theorem 2.5 -- 4.5. Proof of Theorem 2.6 -- 5. The Whole Space Problem -- 5.1. Representation Formulas of Solutions -- 5.2. Estimates of P(ξ,λ) for γ=0. -- 5.3. Estimates of P(ξ,λ) for γ> -- 0. -- 5.4. Proof of Theorem 5.1 -- 6. The Problem in Exterior Domains -- 6.1. Construction of Parametrix -- 6.2. Uniqueness of Solutions -- 6.3. A Priori Estimates -- 6.4. An Auxiliary Problem -- 6.5. Proof of Theorem 2.1 -- 7. Application to a Nonlinear Problem -- 7.1. Generation of an Analytic C0-Semigroup -- 7.2. Maximal Regularity with Exponential Stability -- 7.3. Estimates of Nonlinear Terms -- 7.4. Global Solvability of the Nonlinear Problem -- References -- Rate of the Enhanced Dissipation for the Two-jet Kolmogorov Type Flow on the Unit Sphere -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Analysis of the Linearized Operator -- 3.1. Settings and Basic Results -- 3.2. Verification of Assumption 4.6 -- 3.3. Estimates for the Semigroup -- 4. Abstract Results -- 5. Appendix: Basic Formulas of Differential Geometry -- Acknowledgements -- References -- Reacting Multi-component Fluids: Regular Solutions in Lorentz Spaces -- Abstract -- 1. Introduction -- 2. Functional Spaces and the Main Result -- 3. Auxiliary Results and Linear Theory -- 4. A Priori Estimates -- 4.1. Velocity Bounds -- 4.2. Estimates for the Density -- 5. Existence -- Acknowledgements -- References. Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals -- Abstract -- 1. Introduction -- 2. Maximal Lp-Lq Regularity -- 2.1. mathcalR-boundedness of Solution Operators -- 2.2. A Proof of Theorem 2.1 -- 3. Decay Property of Solutions to the Linearized Problem -- 3.1. Decay Estimates for d -- 3.2. Decay Estimates for U and mathbbQ -- 3.2.1. Analysis of Low Frequency Parts -- 3.2.2. Analysis of High Frequency Parts -- 4. A Proof of Theorem 1.1 -- 4.1. Analysis of Time Shifted Equations -- 4.2. Analysis of Compensation Equations -- 4.2.1. Estimates of Spatial Derivatives in Lp-Lq -- 4.2.2. Estimates of Time Derivatives in Lp-Lq -- 4.2.3. Estimates of the Lower Order Term in Linfty-Lq -- 4.3. Conclusion -- References -- Maximal Regularity for Compressible Two-Fluid System -- Abstract -- 1. Introduction -- 1.1. Notation -- 1.2. Main Results -- 1.3. Discussion -- 2. Lagrangian Coordinates -- 3. Local Well-Posedness -- 3.1. Linearization Around the Initial Condition -- 3.2. Maximal Regularity -- 3.3. Preliminary Estimates -- 3.4. Estimate of the Right Hand Side of (3.3) -- 3.5. Contraction Argument-Proof of Theorem 1.1 -- 4. Global Well-Posedness -- 4.1. Linearization Around the Constant State -- 4.2. Exponential Decay -- 4.3. Bounds for Nonlinearities -- 4.4. Proof of Theorem 1.2 -- Appendix -- Acknowledgements -- References -- Steady Compressible Navier-Stokes-Fourier Equations with Dirichlet Boundary Condition for the Temperature -- Abstract -- 1. Introduction -- 2. Formulation of the Problem: Main Result -- 3. Weak Compactness of Weak and Variational Entropy Ballistic Solutions -- 3.1. A Priori Estimates -- 3.2. Weak Compactness -- 4. Construction of the Solution -- References -- A Slightly Supercritical Condition of Regularity of Axisymmetric Solutions to the Navier-Stokes Equations -- Abstract -- 1. Introduction -- 2. Auxiliary Facts. 3. Proof of Proposition 1.4 -- 4. Proof of Theorem 1.3 -- Acknowledgements -- References -- Spatial Pointwise Behavior of Time-Periodic Navier-Stokes Flow Induced by Oscillation of a Moving Obstacle -- Abstract -- 1. Introduction -- 2. Results -- 2.1. Notation -- 2.2. Evolution Operator -- 2.3. Main Results -- 3. Proof of Theorem 2.1 -- 3.1. Weak Form of the Integral Equation -- 3.2. Regularity in x -- 3.3. Regularity in t and the Pressure -- 4. Proof of Theorem 2.2 -- 4.1. Reduction to the Whole Space Problem -- 4.2. Integral Equation for the Whole Space Problem -- 4.3. Reconstruction Procedure -- References. |
Record Nr. | UNINA-9910633925403321 |
Cham, Switzerland : , : Birkhäuser, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Collected papers in honor Yoshihiro Shibata / / Tohru Ozawa, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2023] |
Descrizione fisica | 1 online resource (396 pages) |
Disciplina | 531 |
Soggetto topico |
Continuum mechanics
Differential equations Mecànica dels medis continus Equacions diferencials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783031192524
9783031192517 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Preface -- References -- Global Wellposedness of the Primitive Equations with Nonlinear Equation of State in Critical Spaces -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Typical Ocean Densities -- 3.1. Linear Density -- 3.2. Equation of State by TEOS-10 -- 3.3. Equation of State by McDongall-Jacket-Wright-Feistel -- 3.4. Equation of State by UNESCO-80 -- 4. Main Result -- 5. Estimates for the Local Existence -- 6. A Priori Estimates -- 7. Proof of Theorem 4.1 -- 7.1. Local Wellposedness -- 7.2. Global Wellposedness -- Appendix A. Semilinear Evolution Equations and Maximal Lr-Regularity -- References -- On the Global Existence for the Compressible Euler-Riesz System -- Abstract -- Introduction -- 1. Main Results -- 2. A Local in Time Result for Non-decaying Data -- 2.1. A Priori Estimates -- 2.2. About the Proof of Existence -- 2.3. Uniqueness -- 3. A Global Existence Result -- 3.1. A Priori Estimates -- 3.2. Existence -- 3.3. The Proof of Uniqueness -- 3.4. Instability of Nontrivial Static Solutions in the Attractive Case -- 4. About Ideal Gases -- 4.1. Local Existence -- 4.2. Global Existence -- 4.3. Remark on Static Solutions -- Appendix -- Acknowledgements -- References -- Rotation Problem for a Two-Phase Drop -- Abstract -- 1. Introduction -- 2. Linear Problem -- 3. The Nonlinear Problem -- References -- On the Stokes-Type Resolvent Problem Associated with Time-Periodic Flow Around a Rotating Obstacle -- Abstract -- 1. Introduction -- 2. Notation -- 3. Main Results -- 4. The Resolvent Problem in the Whole Space -- 5. The Resolvent Problem in an Exterior Domain -- 6. The Time-Periodic Problem -- References -- Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit -- Abstract -- 1. Introduction -- 2. Preliminary Material -- 2.1. Mathematical Theory of the Closed System.
2.2. Transport Coefficients -- 2.3. Equation of State -- 2.4. Relative Energy -- 3. Main Results -- 3.1. Unconditional Convergence in the Absence of Boundary Layer -- 3.2. Conditional Result: Viscous Boundary Layer -- 4. Consistency of the Vanishing Dissipation/Radiation Approximation -- 4.1. Temperature for the Euler System -- 4.2. Consistency -- 4.2.1. Viscous Stress Consistency -- 4.2.2. Heat Flux Consistency -- 4.2.3. Radiation Entropy Convective Flux Consistency -- 5. Convergence -- 5.1. Velocity Regularization -- 5.2. Application of the Relative Energy Inequality -- 5.3. Integrals Controlled by the Consistency Estimates -- 5.4. Integrals Independent of the Boundary Layer -- 5.5. Boundary Layer -- 5.5.1. Viscous Stress -- 5.5.2. Convective Term -- 5.6. Strong Convergence -- References -- On the Hydrostatic Approximation of Compressible Anisotropic Navier-Stokes Equations-Rigorous Justification -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Main Result -- 3.1. Dissipative Weak Solutions of CNS -- 3.2. Strong Solution of CPE -- 3.3. Versatile Relative Entropy Inequality -- 3.4. Main Result -- 4. Convergence -- 4.1. Main Idea of Proof -- 4.2. Step 1 -- 4.3. Step 2 -- 4.4. Step 3 -- Acknowledgements -- References -- A Route to Chaos in Rayleigh-Bénard Heat Convection -- Abstract -- 1. Introduction -- 2. linear Stability and Critical Rayleigh Number -- 3. Routes to Chaos -- 3.1. Roll Solutions on Bifurcation Branches in the Large -- 3.2. Time Evolution of Roll Solutions and the Secondary Hopf Bifurcation -- 3.3. Concluding Remark -- Acknowledgements -- References -- Existence of Weak Solution to the Nonstationary Navier-Stokes Equations Approximated by Pressure Stabilization Method -- Abstract -- 1. Introduction -- 2. Notations and Main Results -- 3. Preliminaries -- 4. Proof of Main Results -- Acknowledgements -- References. Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application -- Abstract -- 1. Introduction -- 2. Notation and Main Results -- 2.1. Notation -- 2.2. Main Results -- 3. Preliminaries -- 3.1. Some Inequalities -- 3.2. Compact Embeddings -- 3.3. Results of the Large Resolvent Parameter -- 3.4. Maximal Regularity -- 4. The Problem in Bounded Domains -- 4.1. Existence of Solutions -- 4.2. Uniqueness of Solutions -- 4.3. A Priori Estimates -- 4.4. Proof of Theorem 2.5 -- 4.5. Proof of Theorem 2.6 -- 5. The Whole Space Problem -- 5.1. Representation Formulas of Solutions -- 5.2. Estimates of P(ξ,λ) for γ=0. -- 5.3. Estimates of P(ξ,λ) for γ> -- 0. -- 5.4. Proof of Theorem 5.1 -- 6. The Problem in Exterior Domains -- 6.1. Construction of Parametrix -- 6.2. Uniqueness of Solutions -- 6.3. A Priori Estimates -- 6.4. An Auxiliary Problem -- 6.5. Proof of Theorem 2.1 -- 7. Application to a Nonlinear Problem -- 7.1. Generation of an Analytic C0-Semigroup -- 7.2. Maximal Regularity with Exponential Stability -- 7.3. Estimates of Nonlinear Terms -- 7.4. Global Solvability of the Nonlinear Problem -- References -- Rate of the Enhanced Dissipation for the Two-jet Kolmogorov Type Flow on the Unit Sphere -- Abstract -- 1. Introduction -- 2. Preliminaries -- 3. Analysis of the Linearized Operator -- 3.1. Settings and Basic Results -- 3.2. Verification of Assumption 4.6 -- 3.3. Estimates for the Semigroup -- 4. Abstract Results -- 5. Appendix: Basic Formulas of Differential Geometry -- Acknowledgements -- References -- Reacting Multi-component Fluids: Regular Solutions in Lorentz Spaces -- Abstract -- 1. Introduction -- 2. Functional Spaces and the Main Result -- 3. Auxiliary Results and Linear Theory -- 4. A Priori Estimates -- 4.1. Velocity Bounds -- 4.2. Estimates for the Density -- 5. Existence -- Acknowledgements -- References. Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals -- Abstract -- 1. Introduction -- 2. Maximal Lp-Lq Regularity -- 2.1. mathcalR-boundedness of Solution Operators -- 2.2. A Proof of Theorem 2.1 -- 3. Decay Property of Solutions to the Linearized Problem -- 3.1. Decay Estimates for d -- 3.2. Decay Estimates for U and mathbbQ -- 3.2.1. Analysis of Low Frequency Parts -- 3.2.2. Analysis of High Frequency Parts -- 4. A Proof of Theorem 1.1 -- 4.1. Analysis of Time Shifted Equations -- 4.2. Analysis of Compensation Equations -- 4.2.1. Estimates of Spatial Derivatives in Lp-Lq -- 4.2.2. Estimates of Time Derivatives in Lp-Lq -- 4.2.3. Estimates of the Lower Order Term in Linfty-Lq -- 4.3. Conclusion -- References -- Maximal Regularity for Compressible Two-Fluid System -- Abstract -- 1. Introduction -- 1.1. Notation -- 1.2. Main Results -- 1.3. Discussion -- 2. Lagrangian Coordinates -- 3. Local Well-Posedness -- 3.1. Linearization Around the Initial Condition -- 3.2. Maximal Regularity -- 3.3. Preliminary Estimates -- 3.4. Estimate of the Right Hand Side of (3.3) -- 3.5. Contraction Argument-Proof of Theorem 1.1 -- 4. Global Well-Posedness -- 4.1. Linearization Around the Constant State -- 4.2. Exponential Decay -- 4.3. Bounds for Nonlinearities -- 4.4. Proof of Theorem 1.2 -- Appendix -- Acknowledgements -- References -- Steady Compressible Navier-Stokes-Fourier Equations with Dirichlet Boundary Condition for the Temperature -- Abstract -- 1. Introduction -- 2. Formulation of the Problem: Main Result -- 3. Weak Compactness of Weak and Variational Entropy Ballistic Solutions -- 3.1. A Priori Estimates -- 3.2. Weak Compactness -- 4. Construction of the Solution -- References -- A Slightly Supercritical Condition of Regularity of Axisymmetric Solutions to the Navier-Stokes Equations -- Abstract -- 1. Introduction -- 2. Auxiliary Facts. 3. Proof of Proposition 1.4 -- 4. Proof of Theorem 1.3 -- Acknowledgements -- References -- Spatial Pointwise Behavior of Time-Periodic Navier-Stokes Flow Induced by Oscillation of a Moving Obstacle -- Abstract -- 1. Introduction -- 2. Results -- 2.1. Notation -- 2.2. Evolution Operator -- 2.3. Main Results -- 3. Proof of Theorem 2.1 -- 3.1. Weak Form of the Integral Equation -- 3.2. Regularity in x -- 3.3. Regularity in t and the Pressure -- 4. Proof of Theorem 2.2 -- 4.1. Reduction to the Whole Space Problem -- 4.2. Integral Equation for the Whole Space Problem -- 4.3. Reconstruction Procedure -- References. |
Record Nr. | UNISA-996499865603316 |
Cham, Switzerland : , : Birkhäuser, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|