1: Epidemiologia generale ed applicata / Bruno Angelillo ... \et al.!
| 1: Epidemiologia generale ed applicata / Bruno Angelillo ... \et al.! |
| Pubbl/distr/stampa | Milano \etc.!, : Masson, 1993 |
| Descrizione fisica | XV, 385 p. : ill. ; 27 cm. |
| Disciplina | 614 |
| Soggetto topico |
Igiene pubblica - Epidemologia
Epidemiologia |
| ISBN | 8821421805 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNICAS-BVE0045977 |
| Milano \etc.!, : Masson, 1993 | ||
| Lo trovi qui: Univ. di Cassino e del Lazio Meridionale | ||
| ||
2000 Years of Pandemics : Past, Present, and Future / / by Claudia Ferreira, Marie-Françoise J. Doursout, Joselito S. Balingit
| 2000 Years of Pandemics : Past, Present, and Future / / by Claudia Ferreira, Marie-Françoise J. Doursout, Joselito S. Balingit |
| Autore | Ferreira Claudia <1955-> |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (416 pages) |
| Disciplina |
306.461
362.1969 |
| Soggetto topico |
Internal medicine
Public health Epidemiology Emergency medical services Family medicine Internal Medicine Public Health Emergency Services General Practice and Family Medicine Epidèmies Epidemiologia Salut pública Història |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-10035-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction. Part-1: Pandemic in the past -- First 1000 Years -- Black Death -- Outbreaks in the new World -- Syphilis, Cholera, and Yellow Fever -- Part-2: Pandemics In The Present -- The World Since 1900: Background to Pandemics in the Present -- Influenza Pandemics -- Coronavirus Pandemics -- Human Immunodeficiency Virus (HIV) -- Vaccines -- Zoonoses -- The Next Pandemic -- The Next Pandemic: Hemorrhagic Fevers -- Part-3:The Next Pandemic: Bioterrorism -- The Next Pandemic: Climate Change -- The Next Pandemic: Antibiotic Resistance -- The Next Pandemic: Challenges and Hopes. |
| Record Nr. | UNINA-9910659484503321 |
Ferreira Claudia <1955->
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
AIDS : la sfida antropologica / Francoise Heritier-Auge ; a cura di Francesco Maiello ; nota introduttiva di Luigi M. Lombardi Satriani
| AIDS : la sfida antropologica / Francoise Heritier-Auge ; a cura di Francesco Maiello ; nota introduttiva di Luigi M. Lombardi Satriani |
| Autore | Héritier-Augé, Francoise |
| Pubbl/distr/stampa | Roma : Ei, [c1993] |
| Descrizione fisica | 103 p. ; 20 cm. |
| Altri autori (Persone) | Maiello, Francesco |
| Collana | Ventunesimo secolo ; 1 |
| Soggetto topico |
Epidemiologia
Sindrome da immunodeficienza acquisita |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991001734569707536 |
Héritier-Augé, Francoise
|
||
| Roma : Ei, [c1993] | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash
| Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash |
| Autore | Lash Timothy L. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (475 pages) |
| Disciplina | 614.4072 |
| Collana | Statistics for Biology and Health |
| Soggetto topico |
Epidemiology - Research
Social sciences - Methodology Epidemiologia Estadística matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-82673-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Introduction, Objectives, and an Alternative -- Introduction: Biases in Health Research -- Statistical Inference in Public Health Research -- The Treatment of Uncertainty in Nonrandomized Research -- When Bias Analysis Will Be Most Useful -- Judgments Under Uncertainty -- The Dual-Process Model of Cognition -- Anchoring and Adjustment -- Overconfidence -- Failure to Account for the Base-Rate -- Conclusion -- References -- Chapter 2: A Guide to Implementing Quantitative Bias Analysis -- Introduction -- Reducing Error -- Reducing Error by Design -- Reducing Error in the Analysis -- Quantifying Error -- Evaluating the Potential Value of Quantitative Bias Analysis? -- Planning for Bias Analysis -- Creating a Data Collection Plan for Bias Analysis -- Creating an Analytic Plan for a Bias Analysis -- Type of Data: Record-Level Versus Summary -- Type of Bias Analysis -- Order of Bias Analysis Adjustments -- Bias Analysis Techniques -- Simple Bias Analysis -- Multidimensional Bias Analysis -- Probabilistic Bias Analysis -- Multiple Bias Modeling -- Direct Bias Modeling and Missing Data Methods -- Bayesian Bias Analysis -- Assigning Values and Distributions to Bias Parameters -- Directed Acyclic Graphs -- Conclusion -- References -- Chapter 3: Data Sources for Bias Analysis -- Bias Parameters -- Internal Data Sources -- Selection Bias -- Uncontrolled Confounding -- Information Bias -- Design of Internal Validation Studies -- Limitations of Internal Validation Studies -- External Data Sources -- Selection Bias -- Unmeasured Confounder -- Information Bias -- Expert Opinion -- Summary -- References -- Chapter 4: Selection Bias -- Introduction -- Definitions and Terms -- Conceptual -- Depicting Selection Bias Using Causal Graphs -- Design Considerations -- Bias Analysis.
Motivation for Bias Analysis -- Sources of Data -- Simple Bias-Adjustment for Differential Initial Participation -- Example -- Introduction to Bias Analysis -- Bias Analysis by Projecting the Exposed Proportion Among Nonparticipants -- Bias Analysis Using Selection Proportions -- Bias Analysis Using Inverse Probability of Participation Weighting -- Simple Bias-Adjustment for Differential Loss-to-Follow-up -- Example -- Bias Analysis by Modeling Outcomes -- Bias Analysis by Inverse Probability of Attrition Weighting -- Multidimensional Bias Analysis for Selection Bias -- Example -- References -- Chapter 5: Uncontrolled Confounders -- Introduction -- Key Concepts -- Definitions -- Motivation for Bias Analysis -- Data Sources -- Introduction to Simple Bias Analysis -- Approach -- Introduction to the Example -- Bias Parameters -- Implementation of Simple Bias Analysis -- Ratio Measures -- Example -- Difference Measures -- Person-time Designs -- Unmeasured Confounder in the Presence of Effect Measure Modification -- Polytomous Confounders -- Multidimensional Bias Analysis for Unmeasured Confounding -- Example -- Bounding the Bias Limits of an Unmeasured Confounding -- Analytic Approach -- The E-Value and G-Value -- Signed Directed Acyclic Graphs to Estimate the Direction of Bias -- References -- Chapter 6: Misclassification -- Introduction -- Definitions and Terms -- Differential vs. Nondifferential Misclassification -- Dependent vs. Independent Misclassification -- Directed Acyclic Graphs and Misclassification -- Calculating Classification Bias Parameters from Validation Data -- Sources of Data -- Bias Analysis of Exposure Misclassification -- Bias-Adjusting for Exposure Misclassification Using Sensitivity and Specificity: Nondifferential and Independent Errors -- Bias-Adjusting for Exposure Misclassification Using Predictive Values. Bias-Adjustment for Nondifferential Outcome Misclassification Using Positive Predictive Values for the Risk Ratio Measure of A... -- Bias-Adjustments Using Sensitivity and Specificity: Differential Independent Errors -- Bias-Adjustments Using Sensitivity and Specificity: Internal Validation Data -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Disease Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Independent Errors -- Disease Misclassification in Case-Control Studies -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Covariate Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Differential Misclassification with Independent Errors -- Overreliance on Nondifferential Misclassification of Covariates Biasing Toward the Null -- Dependent Misclassification -- Matrix Method for Misclassification Adjustment -- Multidimensional Bias Analysis for Misclassification -- Limitations -- Negative Expected Cell Frequencies -- Other Considerations -- References -- Chapter 7: Preparing for Probabilistic Bias Analysis -- Introduction -- Preparing for Probabilistic Bias Analysis -- Statistical Software for Probabilistic Bias Analysis -- Summary Level Versus Record Level Probabilistic Bias Analysis -- Describing Uncertainty in the Bias Parameters -- Probability Distributions -- Uniform Distribution -- Generalized Method for Sampling from Distributions -- Trapezoidal Distribution -- Triangular Distribution -- Normal Distribution -- Beta Distribution -- Bernoulli and Binomial Distributions -- Other Probability Distributions -- Sensitivity to Chosen Distributions -- Correlated Distributions -- Conclusions -- References -- Chapter 8: Probabilistic Bias Analysis for Simulation of Summary Level Data -- Introduction. Analytic Approach for Summary Level Probabilistic Bias Analysis -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Incorporate Conventional Random Error by Sampling Summary Statistics -- Step 4c (Alternate): Resample the Prevalence of Misclassification Adjusted Exposure -- Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c -- Step 6: Summarize the Bias-Adjusted Estimates with a Frequency Distribution that Yields a Central Tendency and Simulation Inte... -- Misclassification Implementation: Predictive Values -- Misclassification Implementation: Predictive Values - Alternative -- Misclassification of Outcomes and Confounders -- Uncontrolled Confounding Implementation -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Confounding Implementation Alternative: Relative Risk Due to Confounding -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions. Step 4b: Generate Bias-Adjusted Results Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Implementation -- An Example of Probabilistic Bias Analysis in the Presence of Substantial Source Population Data -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Adjustment Using Selection Probabilities -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Computing Issues with Summary Level Probabilistic Bias Analysis -- Bootstrapping -- Impossible Values for Bias Parameters and Model Diagnostic Plots -- Conclusions -- Appendix: Sampling Models for Exposure Misclassification -- References -- Chapter 9: Probabilistic Bias Analysis for Simulation of Record-Level Data -- Introduction -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters. Step 3: Assign Probability Distributions to Each Bias Parameter. |
| Record Nr. | UNINA-9910556891103321 |
Lash Timothy L.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash
| Applying quantitative bias analysis to epidemiologic data / / Matthew P. Fox, Richard F. MacLehose, and Timothy L. Lash |
| Autore | Lash Timothy L. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (475 pages) |
| Disciplina | 614.4072 |
| Collana | Statistics for Biology and Health |
| Soggetto topico |
Epidemiology - Research
Social sciences - Methodology Epidemiologia Estadística matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-82673-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Introduction, Objectives, and an Alternative -- Introduction: Biases in Health Research -- Statistical Inference in Public Health Research -- The Treatment of Uncertainty in Nonrandomized Research -- When Bias Analysis Will Be Most Useful -- Judgments Under Uncertainty -- The Dual-Process Model of Cognition -- Anchoring and Adjustment -- Overconfidence -- Failure to Account for the Base-Rate -- Conclusion -- References -- Chapter 2: A Guide to Implementing Quantitative Bias Analysis -- Introduction -- Reducing Error -- Reducing Error by Design -- Reducing Error in the Analysis -- Quantifying Error -- Evaluating the Potential Value of Quantitative Bias Analysis? -- Planning for Bias Analysis -- Creating a Data Collection Plan for Bias Analysis -- Creating an Analytic Plan for a Bias Analysis -- Type of Data: Record-Level Versus Summary -- Type of Bias Analysis -- Order of Bias Analysis Adjustments -- Bias Analysis Techniques -- Simple Bias Analysis -- Multidimensional Bias Analysis -- Probabilistic Bias Analysis -- Multiple Bias Modeling -- Direct Bias Modeling and Missing Data Methods -- Bayesian Bias Analysis -- Assigning Values and Distributions to Bias Parameters -- Directed Acyclic Graphs -- Conclusion -- References -- Chapter 3: Data Sources for Bias Analysis -- Bias Parameters -- Internal Data Sources -- Selection Bias -- Uncontrolled Confounding -- Information Bias -- Design of Internal Validation Studies -- Limitations of Internal Validation Studies -- External Data Sources -- Selection Bias -- Unmeasured Confounder -- Information Bias -- Expert Opinion -- Summary -- References -- Chapter 4: Selection Bias -- Introduction -- Definitions and Terms -- Conceptual -- Depicting Selection Bias Using Causal Graphs -- Design Considerations -- Bias Analysis.
Motivation for Bias Analysis -- Sources of Data -- Simple Bias-Adjustment for Differential Initial Participation -- Example -- Introduction to Bias Analysis -- Bias Analysis by Projecting the Exposed Proportion Among Nonparticipants -- Bias Analysis Using Selection Proportions -- Bias Analysis Using Inverse Probability of Participation Weighting -- Simple Bias-Adjustment for Differential Loss-to-Follow-up -- Example -- Bias Analysis by Modeling Outcomes -- Bias Analysis by Inverse Probability of Attrition Weighting -- Multidimensional Bias Analysis for Selection Bias -- Example -- References -- Chapter 5: Uncontrolled Confounders -- Introduction -- Key Concepts -- Definitions -- Motivation for Bias Analysis -- Data Sources -- Introduction to Simple Bias Analysis -- Approach -- Introduction to the Example -- Bias Parameters -- Implementation of Simple Bias Analysis -- Ratio Measures -- Example -- Difference Measures -- Person-time Designs -- Unmeasured Confounder in the Presence of Effect Measure Modification -- Polytomous Confounders -- Multidimensional Bias Analysis for Unmeasured Confounding -- Example -- Bounding the Bias Limits of an Unmeasured Confounding -- Analytic Approach -- The E-Value and G-Value -- Signed Directed Acyclic Graphs to Estimate the Direction of Bias -- References -- Chapter 6: Misclassification -- Introduction -- Definitions and Terms -- Differential vs. Nondifferential Misclassification -- Dependent vs. Independent Misclassification -- Directed Acyclic Graphs and Misclassification -- Calculating Classification Bias Parameters from Validation Data -- Sources of Data -- Bias Analysis of Exposure Misclassification -- Bias-Adjusting for Exposure Misclassification Using Sensitivity and Specificity: Nondifferential and Independent Errors -- Bias-Adjusting for Exposure Misclassification Using Predictive Values. Bias-Adjustment for Nondifferential Outcome Misclassification Using Positive Predictive Values for the Risk Ratio Measure of A... -- Bias-Adjustments Using Sensitivity and Specificity: Differential Independent Errors -- Bias-Adjustments Using Sensitivity and Specificity: Internal Validation Data -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Disease Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Independent Errors -- Disease Misclassification in Case-Control Studies -- Overreliance on Nondifferential Misclassification Biasing Toward the Null -- Covariate Misclassification -- Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Differential Misclassification with Independent Errors -- Overreliance on Nondifferential Misclassification of Covariates Biasing Toward the Null -- Dependent Misclassification -- Matrix Method for Misclassification Adjustment -- Multidimensional Bias Analysis for Misclassification -- Limitations -- Negative Expected Cell Frequencies -- Other Considerations -- References -- Chapter 7: Preparing for Probabilistic Bias Analysis -- Introduction -- Preparing for Probabilistic Bias Analysis -- Statistical Software for Probabilistic Bias Analysis -- Summary Level Versus Record Level Probabilistic Bias Analysis -- Describing Uncertainty in the Bias Parameters -- Probability Distributions -- Uniform Distribution -- Generalized Method for Sampling from Distributions -- Trapezoidal Distribution -- Triangular Distribution -- Normal Distribution -- Beta Distribution -- Bernoulli and Binomial Distributions -- Other Probability Distributions -- Sensitivity to Chosen Distributions -- Correlated Distributions -- Conclusions -- References -- Chapter 8: Probabilistic Bias Analysis for Simulation of Summary Level Data -- Introduction. Analytic Approach for Summary Level Probabilistic Bias Analysis -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Incorporate Conventional Random Error by Sampling Summary Statistics -- Step 4c (Alternate): Resample the Prevalence of Misclassification Adjusted Exposure -- Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c -- Step 6: Summarize the Bias-Adjusted Estimates with a Frequency Distribution that Yields a Central Tendency and Simulation Inte... -- Misclassification Implementation: Predictive Values -- Misclassification Implementation: Predictive Values - Alternative -- Misclassification of Outcomes and Confounders -- Uncontrolled Confounding Implementation -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Confounding Implementation Alternative: Relative Risk Due to Confounding -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions. Step 4b: Generate Bias-Adjusted Results Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Step 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Implementation -- An Example of Probabilistic Bias Analysis in the Presence of Substantial Source Population Data -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Selection Bias Adjustment Using Selection Probabilities -- Step 1: Identify the Source of Bias -- Step 2: Identify the Bias Parameters -- Step 3: Assign Probability Distributions to Each Bias Parameter -- Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty and Random Error -- Step 4a: Sample from the Bias Parameter Distributions -- Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters -- Steps 4c: Sample the Bias-Adjusted Effect Estimate -- Steps 5 and 6: Resample, Save and Summarize -- Computing Issues with Summary Level Probabilistic Bias Analysis -- Bootstrapping -- Impossible Values for Bias Parameters and Model Diagnostic Plots -- Conclusions -- Appendix: Sampling Models for Exposure Misclassification -- References -- Chapter 9: Probabilistic Bias Analysis for Simulation of Record-Level Data -- Introduction -- Exposure Misclassification Implementation -- Step 1: Identify the Source of Bias -- Step 2: Select the Bias Parameters. Step 3: Assign Probability Distributions to Each Bias Parameter. |
| Record Nr. | UNISA-996466557403316 |
Lash Timothy L.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Artificial Intelligence and Complex Dynamical Systems / / by Giorgos Tsironis
| Artificial Intelligence and Complex Dynamical Systems / / by Giorgos Tsironis |
| Autore | Tsironis Giorgos |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (391 pages) |
| Disciplina | 530.1 |
| Collana | Understanding Complex Systems |
| Soggetto topico |
System theory
Artificial intelligence Quantum theory Quantum electrodynamics Biophysics Epidemiology Complex Systems Artificial Intelligence Quantum Physics Quantum Electrodynamics, Relativistic and Many-body Calculations Teoria de sistemes Intel·ligència artificial Teoria quàntica Electrodinàmica quàntica Biofísica Epidemiologia Sistemes complexos |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031819469
3031819462 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Complex systems and machine learning -- Chapter 2. Regression and Classification -- Chapter 3. Data manipulation techniques -- Chapter 4. Artificial neurons and deep learning -- Chapter 5. Powerful neural network architectures -- Chapter 6. Autoencoders and more -- Chapter 7. The Discrete Nonlinear Schr¨odinger Equation -- Chapter 8. Learning Analytical Solutions -- Chapter 9. The targeted energy transfer model -- Chapter 10. Dynamical embedding with autoencoders -- Chapter 11. Chimeras -- Chapter 12. Branching -- Chapter 13. Discrete breathers -- Chapter 14. Quantum targeted transfer with machine learning -- Chapter 15. Learning quantum systems -- Chapter 16. Action potential propagation in the heart -- Chapter 17. Machine learning cardiology -- Chapter 18. Epidemiology with physics informed machine learning -- Chapter 19. Foundations -- Chapter 20. Computational complexity and the butterfly effect. |
| Record Nr. | UNINA-9910987692503321 |
Tsironis Giorgos
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biochemical, Immunological and Epidemiological Analysis of Parasitic Diseases / / by P.K. Bandyopadhyay, N.R. Das, Amit Chattopadhyay
| Biochemical, Immunological and Epidemiological Analysis of Parasitic Diseases / / by P.K. Bandyopadhyay, N.R. Das, Amit Chattopadhyay |
| Autore | Bandyopadhyay Premansukumar |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (325 pages) |
| Disciplina | 616.962 |
| Collana | Biomedical and Life Sciences Series |
| Soggetto topico |
Parasitology
Epidemiology Immunology Molecular biology Molecular Biology Malalties parasitàries Epidemiologia Immunologia Medicina preventiva |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-4384-9
981-16-4383-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Protozoan Parasites -- Chapter 3. Introduction to Parasitic Helminthes and Cestoda -- Chapter 4. Organisms Those Carry Disease Causing Organisms (Vector) -- Chapter 5. Epidemiology -- Chapter 6. Biochemistry -- Chapter 7. Molecular Biology and Molecular Genetics -- Chapter 8. Physiology -- Chapter 9. Immunology -- Chapter 10. Ecology and Evolution of Parasites Ecology of Parasites -- Chapter 11. Control. |
| Record Nr. | UNINA-9910743377403321 |
Bandyopadhyay Premansukumar
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biostatistics and Epidemiology : A Primer for Health and Biomedical Professionals / / by Sylvia Wassertheil-Smoller, Jordan Smoller
| Biostatistics and Epidemiology : A Primer for Health and Biomedical Professionals / / by Sylvia Wassertheil-Smoller, Jordan Smoller |
| Autore | Wassertheil-Smoller Sylvia |
| Edizione | [5th ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (239 pages) |
| Disciplina | 610.724 |
| Soggetto topico |
Biometry
Medicine - Research Biology - Research Epidemiology Public health Biostatistics Biomedical Research Public Health Biometria Assaigs clínics Epidemiologia Estadística matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-53043-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. The Scientific Method -- 2. A Little Bit of Probability -- 3. Mostly About Statistics -- 4. Mostly About Epidemiology -- 5. Mostly About Screening -- 6. Mostly About Clinical Trials -- 7. Mostly About Quality of Life -- 8. Mostly About Genetic Epidemiology -- 9. Risk Prediction and Risk Classification -- 10. Research Ethics and Statistics -- Postscript -- Appendix A -- Appendix B -- Appendix C -- Appendix D -- Appendix E -- Appendix F -- Appendix G. References -- Suggested Readings -- Index. |
| Record Nr. | UNINA-9910879594003321 |
Wassertheil-Smoller Sylvia
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Cambridge World History of Human Disease / editor Kenneth F. Kiple
| The Cambridge World History of Human Disease / editor Kenneth F. Kiple |
| Autore | Kiple, Kenneth F. |
| Pubbl/distr/stampa | Cambridge : University Press, c1993 |
| Descrizione fisica | XXIV, 1176 p. ; 29 cm. |
| Disciplina | 616 |
| Soggetto topico |
Epidemiologia
Medicina - Storia |
| ISBN | 0521332869 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991002032059707536 |
Kiple, Kenneth F.
|
||
| Cambridge : University Press, c1993 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Cancer causes & control
| Cancer causes & control |
| Pubbl/distr/stampa | Oxford, U.K., : Rapid Communications of Oxford, Ltd., 1990- |
| Disciplina | 614.59994 |
| Soggetto topico |
Cancer - Epidemiology
Cancer - Prevention Neoplasms - epidemiology Neoplasms - prevention & control Cancer - Épidémiologie Cancer - Prévention Càncer Epidemiologia Programes de prevenció |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 1573-7225 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
Cancer causes and control
CCC |
| Record Nr. | UNINA-9910142558203321 |
| Oxford, U.K., : Rapid Communications of Oxford, Ltd., 1990- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||